Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изгиб с кручением брусьев круглого сечения

ИЗГИБ С КРУЧЕНИЕМ БРУСЬЕВ КРУГЛОГО СЕЧЕНИЯ  [c.85]

Изгиб с кручением брусьев круглого сечения  [c.377]

Как находится величина приведенного момента (по различным теориям прочности) при изгибе с кручением бруса круглого сечения Выведите соответствующие формулы.  [c.468]

При расчете на изгиб с кручением бруса круглого поперечного сечения можно пользоваться понятием эквивалентный (или приведенный) момент.  [c.254]


Сочетание изгиба и кручения брусьев круглого поперечного сечения наиболее часто рассматривается при расчете валов. Значительно реже встречаются случаи изгиба с кручением брусьев некруглого сечения.  [c.437]

РАСЧЕТЫ БРУСА КРУГЛОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ ПРИ ИЗГИБЕ С КРУЧЕНИЕМ  [c.240]

При расчете бруса на изгиб с кручением оказывается целесообразным преобразовать формулы для эквивалентных напряжений. Наибольшие касательные напряжения от кручения возникают в точках контура круглого сплошного или кольцевого сечения. Наибольшие нормальные напряжения от изгиба возникают в тех точках контура, где его пересекает силовая линия. Для бруса из пластичного материала эти точки и оказываются опасными, для бруса из хрупкого материала опасна та из них, в которой от изгиба. возникают нормальные напряжения растяжения. Ограничимся расчетом бруса из пластичного материала, так как на изгиб с кручением рассчитывают в основном валы различных машин, а их изготовляют из стали, т. е. из пластичного материала.  [c.301]

Следовательно, расчет бруса круглого поперечного сечения на изгиб с кручением по форме подобен расчету на изгиб, только вместо изгибающего момента в формулу входит величина эквивалентного момента, определяемого по одной из гипотез прочности.  [c.302]

Пусть по компонентам напряженного состояния (рис. 2.128, а) требуется определить главные напряжения. Такое напряженное состояние называется упрощенным плоским, оно возникает в точках бруса, работающего на изгиб с кручением, или на растяжение с кручением, или на растяжение, изгиб и кручение. Для бруса круглого сечения исключение составляют лишь точки, лежащие на его продольной оси, так как в них напряжения и о, и т равны  [c.317]

Определ гм эквивалентные напряжения для бруса круглого сечения, работающего на изгиб с кручением. Выше было установлено, что опасной будет точка А в которой возникают максимальные напряжения от обоих видов деформаций. Максимальные напряжения изгиба и кручения определяются по формулам  [c.324]

Вполне посильны для учащихся следующие темы докладов кручение брусьев тонкостенного замкнутого профиля расчет на растяжение (сжатие) статически неопределимых систем по методу предельного равновесия расчет на кручение брусьев круглого поперечного сечения по методу предельного равновесия расчет на изгиб статически определимых балок по методу предельного равновесия изгиб балок, составленных из материалов с разными модулями упругости изгиб биметаллических элементов при изменении температуры построение эпюр для статически определимых плоских рам.  [c.42]


В обязательную часть программы входит рассмотрение расчетов только бруса круглого сплошного или кольцевого поперечного сечения. Предусмотрено рассмотрение расчетов на изгиб с кручением, на кручение с растяжением (сжатием) и общего случая действия сил. Другие случаи применения гипотез прочности (расчет бруса прямоугольного поперечного сечения, расчет тонкостенных сосудов) относятся к дополнительным вопросам программы.  [c.166]

Следует обстоятельно обсудить вопрос об опасной точке сечения. Опираясь на ранее полученные сведения о пространственном изгибе бруса круглого поперечного сечения, надо напомнить, что наибольшие нормальные напряжения возникают в точках пересечения контура с силовой линией. Видимо, придется также напомнить, как геометрическим сложением моментов определяется положение силовой линии. Далее, напомнив, что при кручении бруса круглого поперечного сечения наибольшие касательные напряжения возникают в точках контура поперечного сечения, приходим к выводу, что в тех точках, где максимальны нормальные напряжения от изгиба, и касательные напряжения будут наибольшими. Таким образом, в общем случае одна из этих точек опасна в частных случаях, когда материал бруса одинаково работает на растяжение и сжатие, обе эти точки одинаково опасны. Определение понятия опасная точка , конечно, остается прежним, т. е. точка, для которой коэффициент запаса минимален. Применительно к рассматриваемой теме это понятие конкретизируется — точка, для которой эквивалентное напряжение максимально. Подчеркиваем, нельзя говорить точка, в которой, .. , так как эквивалентное напряжение — величина расчетная, воображаемая. К сожалению, такая небрежность нередко встречается в учебной литературе.  [c.167]

В 9.1 установлено, что в том случае, когда моменты инерции сечения относительно главных центральных осей равны между собой, косой изгиб бруса невозможен. В связи с этим невозможен косой изгиб брусьев круглого сечения. Поэтому в общем случае действия внешних сил брус круглого сечения испытывает сочетание следующих видов деформаций прямого поперечного изгиба, кручения и центрального растяжения (или сжатия).  [c.377]

Как рассчитывается на прочность брус круглого сечения при изгибе с кручением и растяжением (или сжатием)  [c.407]

Совместное действие нормальных и касательных напряжений. При совместном действии изгиба и кручения или кручения и растяжения (сжатия) простое суммирование невозможно ввиду разного характера напряжений (нормальные и касательные). Достоверные расчетные формулы для таких случаев могут быть получены на основании теорий прочности. Так, например, при совместном действии изгиба и кручения опасными являются точки, в которых нормальные напряжения от изгиба и касательные напряжения от кручения одновременно имеют наибольшие значения. Главные напряжения при изгибе с кручением прямого бруса круглого поперечного сечения могут быть найдены по следующим формулам (ось Ох полагаем совпадающей с геометрической осью бруса)  [c.191]

Для бруса круглого сечения нормальные напряжения от изгиба определяются по результирующему изгибающему моменту М==У Му-1-М1. Кроме того, в поперечных сечениях возникают равномерно распределенные нормальные напряжения от растяжения (сжатия). Характер напряженного состояния в опасной точке в этом случае не отличается от состояния, представленного на рис. 24.9, а, но нормальные напряжения вызываются не только изгибом, но и растяжением (или сжатием). При изгибе с кручением опасными являются две точки поперечного сечения, расположенные на пересечении плоскости действия изгибающего момента с контуром поперечного сечения. При наличии и продольной силы опасной является одна из этих точек при этом если брус изготовлен из- пластичного материала, то та точка, в которой напряжения от изгиба и осевого нагружения имеют одинаковые знаки. .  [c.444]


Как находятся опасные сечения бруса круглого сечения при изгибе с кручением  [c.468]

РАСЧЕТ БРУСА КРУГЛОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ НА ИЗГИБ С КРУЧЕНИЕМ  [c.386]

Таким образом, расчет бруса круглого поперечного сечения на изгиб с кручением ведется аналогично расчету на изгиб, но вместо изгибающего момента в расчетную формулу входит т к называемый эквивалентный момент, который зависит от изгибающих и крутящего моментов, а также от принятой гипотезы прочности. По гипотезе наибольших касательных напряжений,  [c.275]

Червяк рассчитывают на прочность, как брус круглого сечения, подвергающийся совместному действию изгиба, кручения и сжатия (растяжения). В вертикальной плоскости изгиб червяка вызван действием сил Т и Р. соответствующая эпюра представлена на рис. 143, б изгиб в горизонтальной плоскости вызван действием силы С — эпюра изгибающих моментов, условно совмещенная с плоскостью чертежа, приведена на рис. 143, а. Эпюра крутящих моментов дана на рис. 143, г.  [c.202]

Таким образом, расчет бруса круглого поперечного сечения на совместное действие изгиба и кручения по форме совпадает с расчетом на прямой изгиб, но в расчетную формулу вместо изгибающего момента входит приведенный момент, величина которого зависит от изгибающих и крутящего моментов, а также от принятой теории прочности.  [c.384]

При рассмотрении расчета бруса круглого поперечного сечения на совместное действие изгиба и растяжения (сжатия) было установлено (см. стр. 173), что наибольшие напряжения имеют место в точках пересечения контура с силовой линией. Касательные напряжения от кручения максимальны во всех точках контура. Следовательно, указанные точки оказываются опасными и при наличии кручения.  [c.180]

Брусья прямые квадратного, круглого и прямоугольного сечения — Расчет на кручение и изгиб 342, 343 --круглого сечения — Кручение 300—302 --некруглого сечения — Кручение 301, 303, 312 --плоские (с узким прямоугольным сечением) — Изгиб — Устойчивость 368— 370 — Концентрация напряжений 390, 391 Брусья стальные — Канавки кольцевые — Концентрация напряжений 386—388 — Отверстия поперечные— Концентрация напряжений 386, 387  [c.974]

Несущую способность деталей типа стержней можно рассчитать, зная функции пластичности и значения относительных моментов в зависимости от максимальной деформации. Для случая изгиба (рис. 3—4), изгиба с растяжением (рис. 5—8) прямого бруса прямоугольного и круглого сечений, кривого бруса прямоугольного и трапециевидного сечений (рис. 9—15), кручения  [c.417]

При рассмотрении расчета бруса круглого поперечного сечения на совместное действие изгиба и растяжения (сжатия) было установлено (см. стр. 357), что опасна та из точек пересечения контура сечения с силовой линией, в которой знаки напряжений от изгиба и осевого нагружения совпадают. Касательные напряжения от кручения максимальны во всех точках контура. Следовательно, указанная точка оказывается опасной и при наличии кручения. В этой точке имеет место упрощенное плоское напряженное состояние и в зависимости от принятой для расчета гипотезы прочности эквивалентное напряжение вычисляется по одной из формул (9.16), (9.17),  [c.395]

Понятие эквивалентный момент- не имеет смьюла при изгибе с кручением бруса некруглого поперечного сечения. Неприменимо оно и в случае, если, помимо изгиба и кручения, брус круглого сечения испытывает раст.чжение или сжатие.  [c.390]

Рассмотрим такой частный случай расчета бруса круглого сечения, когда в его поперечных сечениях продольная сила равна нулю. В этом случае брус работает на совместное действие изгиба и кручения. Для отыскания опасной точки бруса необходимо установить, как изменяются по длине бруса изгибающие и крутящие моменты, т. е. построить эпюры полных изгибающих моментов М и крутящих моментов М . Построение этих эгпор рассмотрим на конкретном примере вала (рис. 9.21, а). Вал огшрается на подшипники А и В и приводится во вращение двигателем С.  [c.377]

По сравнению с рассмотренным случаем кручения вала здесь получается разница в том отношении, что в поперечных сечениях изогнутого бруса возникают напряжения двух родов, именно растягивающие и сжимающие. Вполне возможно и до известной степени вероятно, что некоторые материалы по отношению к обоим напряжениям как во время перехода за предел упругости, так и за пределом упругости булут вести себя по разному даже в таких случаях, когда до перехода этого предела такой разницы не замечается. У таких материалов весь процесс изгиба будет много сложнее, чем в случае кручения, при котором эта разница отпадает. Это соображение и побудило нас сперва рассмотреть здесь более простой случай кручения вала круглого сечения и уделить ему при изложении главное внимание, хотя в практических приложениях чаще имеют дело с изгибом, чем с кручением.  [c.294]

В машиностроительных техникумах необходимо уделить достаточное внимание общему случаю действия сил на брус круглого поперечного сечения, начав опять-таки с определения опасной точки поперечного сечения. Построив эпюры нормальных напряжений от изгиба (соответствующую результирующему изгибающему моменту) и от растяжения или сжатия и эпюру касательных напряжений от кручения (рис. 14.4), нетрудно установить, какая точка опасна. Конечно, надо рассмотреть случаи действи я как растягивающей, так и сжимающей нагрузок при расчете бруса из хрупкого материала. Основные положения теории следует проиллюстрировать на задаче типа 7.40  [c.169]

Д. и, Шерман предложил метод эффективного решения этих задач для двусвязных областей определенного вида, заключающийся в следующем ) на одном из контуров, ограничивающих область сечения, вводится вспомогательная функция, для определения которой строится интегральное уравнение типа Фредгольма, которое затем решается при помощи разложения вспомогательной функции в ряд по степеням параметра, характеризующего частично размеры сечения, главным образом сравнительную близость граничных контуров для решения задачи с высокой степенью точности оказалось достаточным найти незначительное число приближений. В работах Д. И. Шермана [40], [41], [44—47], Д. И. Шермана и ]VI. 3. Народецкого [1] этим методом решены задачи кручения и изгиба брусьев, поперечные сечения которых являются двусвязными областями, ограниченными окружностью и эллипсом, окружностью и квадратом с закругленными вершинами, неконфокальными эллипсами и т. п. В работе Р. Д. Степанова и Д. И. Шермана [1] изучено кручение круглого бруса, ослабленного двумя продольными цилиндрическими круговыми полостями. В работе Д. И. Шермана [43] изучены бесконечные системы линейных уравнений, построенные для решения задач, рассмотренных в упомянутых выше работах (Шерман [40], Степанов и Шерман [1]).  [c.629]


И. И. Мусхелишвили (1932) разработал теорию кручения и изгиба стержней, составленных из различных материалов и спаянных между собой вдоль боковых поверхностей решение этой задачи для случая кручения двух спаянных между собой брусьев из разного материала приведено в его известной монографии (изд. 2 — 1935). И. Н. Векуа и А. К. Рухадзе (1933) изучили кручение круглого цилиндра, армированного круговым стержнем, а также кручение и изгиб составного стержня, сечение которого имеет вид конфокальных эллипсов А. К. Рухадзе (1935) рассмотрел изгиб и кручение составного профиля, образованного эпитрохоидами случай разграничения гипотрохоидами исследовал Г. А. Кутателадзе (1956). Кручение составного стержня с сечением в виде двух круговых сегментов, спаянных по хорде, при помощи биполярных координат рассмотрели В. М. Дзюба и А. Ш. Асатурян (1965).  [c.29]


Смотреть страницы где упоминается термин Изгиб с кручением брусьев круглого сечения : [c.318]    [c.292]    [c.136]    [c.198]    [c.199]    [c.199]    [c.200]    [c.200]   
Смотреть главы в:

Сопротивление материалов  -> Изгиб с кручением брусьев круглого сечения

Сопротивление материалов Издание 3  -> Изгиб с кручением брусьев круглого сечения



ПОИСК



Брус Кручение

Брус изгиб

Брус круглого сечения 199, 200Изгиб растяжение (сжатие) 223—224Изгиб 207—209 — Косой изгиб 220—223 — Кручение 198207 — Моменты сопротивления

Брусья — большой жесткости круглого поперечного сечения— Изгиб 147 — Кручение 73, 147 — Эпюры касательных напряжений

Изгиб с кручением

Кручение бруса круглого сечения

Кручение круглое

Ось бруса

Расчеты бруса круглого поперечного сечения при изгибе с кручением

Ядро сечения . 9.4. Изгиб с кручением брусьев круглого сечения



© 2025 Mash-xxl.info Реклама на сайте