Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Когерентность света в квантовой оптике

КОГЕРЕНТНОСТЬ СВЕТА В КВАНТОВОЙ ОПТИКЕ Беседа. Небольшой предварительный диалог 287 13.1. Интерференционные опыты. Когерентность первого и более высоких порядков 289 13.2. Флуктуации числа фотонов 293 13.3. Состояния квантованного поля излучения  [c.239]

Переходя к рассмотрению теоретических основ квантовой оптики, остановимся на двух группах вопросов. Первая включает в себя вопросы, связанные с расчетом вероятностей оптических переходов (однофотонных и многофотонных). Вторая связана с рассмотрением когерентности света в квантовой оптике. Здесь дается, в частности, краткий анализ различных состояний квантованного поля излучения,  [c.241]


КОГЕРЕНТНОСТЬ СВЕТА В КВАНТОВОЙ ОПТИКЕ  [c.287]

Генерация гармоник, суммарных и разностных частот играет важную роль для применений в квантовой электронике и в спектроскопии. Как уже было объяснено в разд. В.1 и в ч. I, с помощью этих процессов возможно преобразование света с подходящими свойствами (мощность, когерентность, временное поведение) в такие спектральные области, в которых не существует хороших источников или в которых создаются благоприятные предпосылки для детектирования. В подходящих материалах, при использовании соответствующих резонаторных схем и при согласовании фаз может быть достигнуто почти полное преобразование излучения. Существенный прогресс был достигнут в последние годы в области генерации гармоник, суммарных и разностных частот в волноводах, благодаря чему открылись новые перспективы в применениях интегральной оптики (ср. [3.14-1]). Следует отметить, что благодаря зависимости скорости распространения света определенной длины волны от свойств поперечной моды, в которой это распространение происходит, появляются дополнительные возможности для согласования фаз по сравнению с компактной средой.  [c.336]

После создания мощных квантовых генераторов на оптических частотах (лазеров) возникла и в последние годы бурно развивается самостоятельная область исследований — нелинейная оптика. Понятие нелинейная оптика охватывает все явления в области высоких (оптических) частот, связанные с нелинейностью материальных уравнений в системе уравнений Максвелла. Большой интерес к этому разделу физики объясняется многими причинами. Нелинейная оптика создала новые возможности для изучения поведения ядер, атомов, молекул и твердых тел в электрических полях высокой напряженности. Кроме того, были найдены новые применения теории излучения и сформулированы законы распространения электромагнитных волн в нелинейных средах. Лазеры нашли необычайно широкие применения в самых различных областях науки и техники. При помощи нелинейных оптических эффектов можно получить новую информацию об отдельных атомах и молекулах и об их взаимодействии в плотных средах. На основании различных нелинейных оптических эффектов удалось создать новые когерентные источники света высокой интенсивности, частично с перестраиваемыми частотами. Кроме того, методы нелинейной оптики могут служить основой для развития других нелинейных теорий.  [c.8]


Соотношения (1) — (4) связывают С. ф, P ,(i,7) со свойствами излучения, если применимо классич. описание света и можно говорить об интенсивности излучения и его анергии вне связи с процессом фотодстек-тирования. В этом пределе С. ф. не может быть субпуассоновской, т. е. дисперсия Д/п ) не меньше ср. значения (т). Более общие квантовые соотношения, описывающие С. ф., снимают это ограничение. В квантовой оптике распределение фотоотсчётов связано с оператором плотности излучения р через операторы положительной Е. . и отрицательной Е частотных частей электрич. поля (см. Когерентное состояние, Квантовая когерентность) [5]  [c.662]

Уже на заре развития квантовой механики Ю. Кеннард рассмотрел эволюцию во времени волновых пакетов, которые в момент времени t = О были либо шире, либо уже волнового пакета основного состояния. В отличии от когерентных состояний, у таких волновых пакетов ширина осциллирует, пока сами пакеты движутся туда и обратно в ос-цилляторном потенциале. В последние годы подобные состояния стали играть существенную роль в квантовой оптике. В этом разделе физики они получили название сжатых состояний. Название проистекает из того факта, что эти состояния шире или уже волнового пакета основного состояния. Сжатые состояния усиленно исследовались теоретически и стали играть важную роль в молекулярной физике и при описании ловушек Пауля. В частности, теоретически и экспериментально исследовались сжатые состояния света. Впервые сжатое состояние света было получено в 1985 г. в лаборатории им. Белла.  [c.147]

ЧИТАТЕЛЬ. Когерентность света характеризует его способность к интерференции. Чем выше Ьтепень когерентности, тем контрастнее картина интерференционных полос, наблюдаемая в известном опыте Юнга. Казалось бы, подобные вопросы должны рассматриваться в рамках не квантовой, а волновой оптики.  [c.287]

ОПТИКА [ асферическая содержит элементы, поверхности которых, не имеют сферической формы просветленная обладает уменьшенными коэффициентами отражения света у отдельных ее элементов путем нанесения на них специальных покрытий) как оптическая система (волновая изучает явления, в которых проявляется волновая природа света волоконная рассматривает передачу света и изображений по световодам и пучкам гибких оптических волокон геометрическая изучает законы распространения света в прозрачных средах на основе представлений о световых лучах интегральная изучает методы создания и объединения оптических и оптоэлектронных элементов, предназначенных для управления световыми потоками квантовая изучает явления, в которых при взаимодействии света и вещества существенны квантовые свойства света и атомов вещества когерентная изучает методы создания узконаправленных когерентных пучков света и управления ими нелинейная изучает распространение мощных световых пучков в оптически нелинейных средах (твердые тела, жидкости, газы) и их взаимодействие с веществом силовая изучает воздействие на твердые тела интенсивного светового излучения, в результате которого может нарушаться механическая цельность этих тел статистическая изучает статистические свойства световых полей и особенности их взаимодействия с веществом тонких слоев изучает прохождение света через прозрачные слои вещества, толщина которых соизмерима с длиной световой волны физическая изучает природу света и световых явлений) как раздел оптики электронная занимается вопросами формирования, фокусировки и отклонения пучков электронов и получения с их помощью изображений под воздействием электрических и магнитных полей корпускулярная изучает законы движения заряженных частиц в электрическом и магнитном полях нейтронная изучае взаимодейс вие медленных нейтронов со средой) как раздел физики]  [c.255]


Нестациопарная интерференция наблюдается только при достаточно высокой яркости источников света. Критерием является число фотонов в объёме когерентности к-рое должно бьггь не слишком малым по сравнению с1. Практически нестационарная интерференция имеет место только с лазерными источниками. Очень слабые проявления остаточной нестационарной интерференции в полях тепловых источников света наблюдаются в экспериментах по спектроскопии шумов излучения и но корреляции интенсивностей. Для их тсоретнч. описания помимо рассмотренной К. с. вводится когерентность второго порядка., выражающаяся через ф-ции корреляции уже ие полей, а интенсивностей (см. Квантовая оптика, Квантовая когерентность).  [c.396]

Наиб, распространение получили измерения распределения числа отсчётов в заданном интервале времени от 1 до I Т Рт( , Т) — вероятность регистрации т отсчётов в интервале времени Т. Связь распределения Р 1,Т) с характеристиками света основывается на Соотношениях квантовой оптики. Однако в классич. пределе, когда поток фотонов, выраженный их числом в объёме когерентности (см. Когерентность света), велик и излучение можно характеризовать классической (не операторной) величиной интенсивности 1 1,х,у) [Вт/сы ] (где X и. у —координаты фоточувствит. площадки счётчика), связь Р 1,Т) с характеристиками Света устанавливается из простых соображений о независимости отсчётов друг от друга [4]. В этом случае распределение Р 1(1, Г) определяется полной энергией излучения Q, упавшей на счётчик за время регистрации Т, и квантовой эффективностью счётчика г  [c.661]

В заключение данного пункта отметим следующее. Мы рассматривали волновой параметр вырождения, который является характеристикой излучения, падающего на фотоприемник. Квантовый выход последнего меньше единицы. Следовательно, параметр вырождения фотоотсчетов будет меньше волнового параметра вырождения, и в видимой области спектра вероятность встретиться с подлинно тепловым излучением, для которого классические флуктуации интенсивности доминировали бы в распределении числа фотоотсчетов, оказывается еще меньше. (Правда, квазитепловые источники могут создавать излучение с очень большим параметром вырождения, и в таких случаях классические флуктуации интенсивности могут доминировать в флуктуациях числа фотоотсчетов.) Кроме того, фотоприемник или коллекторная оптика могут охватывать только часть одной пространственной моды источника. (Практически в интервале измерения всегда охватывается очень много временных мод.) В таком случае параметр вырождения фотоотсчетов может снова стать меньше волнового параметра вырождения в результате неполного охвата пространственной моды. Хотя минимальное значение параметра Ж равно единице, нужно учесть уменьшение энергии, достигающей фоточувствительной поверхности. Для этого нормальное значение параметра вырождения фотоотсчетов нужно дополнить множителем, равным отношению эффективной площади измерения к площади когерентности падающего света. В случае протяженного некогерентного источника для параметра вырождения фотоотсчетов можно принять  [c.461]

Квантовая электроника достигла больших успехов в создании лазерных источников света с высокой напряженностью поля, хорошими когерентными свойствами, перестраиваемой частотой и регулируемым распределением излучения во времени. Созданы также регистрирующие устройства высокого временного и спектрального разрешения. С помощью этой новой совершенной аппаратуры в последние годы удалось провести многочисленные и качественно новые эксперименты по взаимодействию межДу электромагнитными полями н атомными системами. Одновременно продолжалось теоретическое изучение таких взаимодействий и была создана теория процессов, происходящих в сильных когерентных полях, причем в зависимости от характера конкретных процессов на передний план в большей или меньшей степени выдвигались квантовые свойства атомных систем нли поля излучения. В некоторых случаях учитывались сразу квантовые свойства как атомных систем, так и поля излучения. Эти экспериментальные и теоретические исследования в нелинейной оптике позволили получить принципиально новую информацию о процессах взаимодействия между светом и атомными системами в различных состояниях, а также о физических и химических свойствах веществ и о параметрах процессов, влияющих на ход нелинейных оптических явлений. Открылись новые горизонты в спектроскопии, фотофизике, фотохимии и квантовой электронике, а также в области их технических применений.  [c.8]

В середине 50-х годов были выполнены первые эксперименты, в которых играла роль корреляция интенсивностей света (т. е. четвертый момент поля или когерентность второго порядка) и которые поэтому можно отнести к квантовой оптике. Форрестер с сотр. [38] в 1955 г. наблюдал вычитание частоты света при фотоэффекте ), а Браун и Твисс [39] в следующем году обнаружили корреляцию интенсивностей света в двух точках пространства ( 4.7). Эти явления легли в основу нового направления спектроскопии [164, 165].  [c.39]

За последние годы существенно повысился интерес к вопросам, связанным со статистическими характеристиками света. Интенсивно изучаются когерентные световые поля, обладающие неклассической статистикой фотонов. Эти работы, в частности, имеют целью уменьшить флуктуации фотоприема до уровня, определяемого дробовым шумом фототока. В рамках этой книги невозможно рассматривать эти работы, основанные на квантовой электродинамике и представляющие синтез волновых и корпускулярных представлений. Мы ограничимся предельно кратким указанием на цикл работ , в которых возможность наблюдения флуктуаций фотонов изучалась в классических схемах волновой оптики (интерферометры Юнга и Майкельсона) с использованием современных методов регистрации фототока.  [c.451]


Область статистической оптики имеет свою богатую историю Многие фундаментальные статистические проблемы были решены еще в конце 19-го столетия применительно к акустике и оптике Рэлеем. Потребность в статистических методах в оптике исключительно возросла в связи со статистической интерпретацией квантовой механики, предложенной Борном. Введенная в 1954 г. Вольфом изящная и общая схема рассмотрения когерентных свойств волн явилась основой, которая позволила единым образом изучать многие важные статистические проблемы в оптике. Заслуживает также отдельного упоминания полуклас-сическая теория регистрации света, созданная Менделем, которая связала (сравнительно простым образом) статистические флуктуации классических волновых величин (поля, интенсивности) с флуктуациями, характерными для взаимодействия света с веществом. Хотя эта история еще далека от завершения, в отдельных последующих главах мы будем к ней возвращаться.  [c.11]

Если фаза рассеянной волны однозначно определяется фазой падающей волны, Р. с. наз. когерентным, в противном случае — н е к о г е-рентным. По ист. традиции Р. с. отд. молекулой (атомом) часто наз. когерентным, если оно рэлеевское, и некогерентным, если оно неупруго. Такое деление условно рэлеевское Р. с. может являться некогерентным процессом так же, как и комбинационное. Строгое решение вопроса о когерентности при Р. с. тесно связано с понятием квантовой когерентности и статистикой излучения (см. Статистическая оптика). Резкое различие в пространств, распределении когерентного и некогерентного рассеянного света обусловлено тем, что при некогерентном Р. с. вследствие нерегулярного, случайного распределения неоднородностей в среде фазы вторичных волн случайны по отношению друг к другу поэтому при интен-ференции не происходит полного взаимного гашения волн, распространяющихся в произвольном направлении.  [c.624]


Смотреть страницы где упоминается термин Когерентность света в квантовой оптике : [c.2]    [c.5]    [c.295]    [c.564]    [c.189]    [c.263]    [c.395]   
Смотреть главы в:

Введение в квантовую оптику  -> Когерентность света в квантовой оптике



ПОИСК



Квантовая оптика

Когерентная (-ое)

Когерентность

Когерентность света

Когерентный свет

Шум квантовый



© 2025 Mash-xxl.info Реклама на сайте