Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Параметр вырождения фотоотсчетов

Заметим, в частности, что отношение дисперсий классических флуктуаций и флуктуаций дробового шума просто равно К/Ж. Важная роль этого параметра подчеркивается тем, что ему дается особое название. Итак, будем называть параметром вырождения фотоотсчетов величину  [c.455]

В случае поляризованного теплового излучения при параметре вырождения фотоотсчетов, стремящемся к нулю, распределение числа фотоотсчетов стремится к распределению Пуассона.  [c.457]

ЯВНО выделяя тем самым роль параметра вырождения фотоотсчетов.  [c.472]


На этом закончим с пространственными аспектами проблемы, перейдем к понятию параметра вырождения света и рассмотрим роль, которую он играет в вопросе о распределении числа фотоотсчетов в случае теплового излучения.  [c.453]

Теперь, вероятно, читатель убедился в том, что существует принципиальное различие в статистическом распределении числа фотоотсчетов в случае излучения высокостабильного одномодового лазера и в случае хаотического излучения тепловых источников. Это различие особенно ясно обнаруживается, если более детально исследовать флуктуации числа фотоотсчетов в обоих случаях, что мы и сделаем в следующем пункте. Однако ситуация оказывается более сложной, чем могло бы показаться с первого взгляда. Различие в распределениях числа фотоотсчетов для этих двух типов излучения не всегда велико. Более того, в видимой области электромагнитного спектра по распределению числа фотоотсчетов в большинстве случаев очень трудно определить тип излучения. Основным критерием различимости этих двух типов излучения, как будет показано, является параметр вырождения, который мы вскоре определим.  [c.453]

В п. А мы рассмотрим флуктуации числа фотоотсчетов в случае, когда на фоточувствительную поверхность падает свет разного типа. В результате мы придем к определению параметра вырождения. В п. Б этот параметр рассматривается в частном случае излучения абсолютно черного тела. Важное значение параметра вырождения станет еще яснее после того, как мы рассмотрим в последних параграфах этой главы различные приложения.  [c.453]

Этот новый параметр вырождения может рассматриваться как параметр вырождения числа фотоотсчетов, который получился  [c.455]

Докажем теперь одно очень важное положение. Когда параметр вырождения числа фотоотсчетов приближается к нулю, распределение числа фотоотсчетов Р К), которое представляет собой биномиальное распределение с отрицательным показателем, становится неотличимым от пуассоновского распределения. Для доказательства этого утверждения необходимы некоторые приближения. Во-первых, если параметр вырождения намного меньше единицы, для гамма-функций в выражении  [c.456]

СВЧ-области спектра (I 10 м) при любой температуре источника, превышающей доли кельвина, волновой параметр вырождения намного больше единицы. Поэтому в данной области спектра вклад классических флуктуаций числа фотоотсчетов должен быть намного больше вклада флуктуаций, связанных с чисто дробовым шумом. В видимой же области спектра (Я г 5-10 м), чтобы волновой параметр вырождения был больше единицы, требуются температуры источника, превышающие 20 ООО К. Поскольку Солнце имеет эффективную температуру абсолютно черного тела, составляющую только 6000 К, мы делаем вывод, что в видимой области спектра огромное число встречающихся источников создают излучение с малым волновым параметром вырождения, и поэтому шум, обусловленный квантовой природой излучения, оказывается значительно большим, чем шум, создаваемый классическими флуктуациями интенсивности.  [c.461]


Поскольку параметр вырождения фотоотсчетов пропорционален К, он пропорционален и квантовому выходу фоточувствительной поверхности. Иногда целесообразно исключить эту зависимость от данной характеристики конкретного фотоприе.м-ника и иметь дело с параметром вырождения, который был бы характеристикой только самого падающего поля. Поэтому мы введем волновой параметр вырождения  [c.455]

Физический смысл этого результата состоит в следующем. Если параметр вырождения фотоотсчетов намного меньше 1, то число фотоотсчетов в каждом отдельном интервале когерентности падающей классической волны с большой вероятностью будет равно либо нулю, либо единице. В таком случае флуктуации классической интенсивности практически не вызывают сгущения фотособытий, так как интенсивность света (с высокой степенью вероятности) недостаточна для того, чтобы вызвать многократные фотособытия в одной ячейке когерентности. Если сгущением фотособытий можно пренебречь, то распределение числа фотоотсчетов будет неотличимым от распределения в случае излучения стабилизированного одномодового лазера, в котором сгущение отсутствует.  [c.457]

В заключение данного пункта отметим следующее. Мы рассматривали волновой параметр вырождения, который является характеристикой излучения, падающего на фотоприемник. Квантовый выход последнего меньше единицы. Следовательно, параметр вырождения фотоотсчетов будет меньше волнового параметра вырождения, и в видимой области спектра вероятность встретиться с подлинно тепловым излучением, для которого классические флуктуации интенсивности доминировали бы в распределении числа фотоотсчетов, оказывается еще меньше. (Правда, квазитепловые источники могут создавать излучение с очень большим параметром вырождения, и в таких случаях классические флуктуации интенсивности могут доминировать в флуктуациях числа фотоотсчетов.) Кроме того, фотоприемник или коллекторная оптика могут охватывать только часть одной пространственной моды источника. (Практически в интервале измерения всегда охватывается очень много временных мод.) В таком случае параметр вырождения фотоотсчетов может снова стать меньше волнового параметра вырождения в результате неполного охвата пространственной моды. Хотя минимальное значение параметра Ж равно единице, нужно учесть уменьшение энергии, достигающей фоточувствительной поверхности. Для этого нормальное значение параметра вырождения фотоотсчетов нужно дополнить множителем, равным отношению эффективной площади измерения к площади когерентности падающего света. В случае протяженного некогерентного источника для параметра вырождения фотоотсчетов можно принять  [c.461]

Если чувствительность интерферометра интенсивностей действительно столь мала, то почему он представляет какую-то ценность Дело (частично) в том, что коллекторные апертуры интерферометра интенсивностей могут быть значительно больше, чем у амплитудного интерферометра, и, следовательно, в рассматриваемом случае коллекторной апертурой может быть охвачена большая доля отдельной ячейки когерентности. Наше предположение о том, что параметр вырождения фотоотсчетов одинаков для обоих интерферометров, если используется свет от одного и того же источника, на самом деле неверно. Если апертура коллектора в каком-либо плече интерферометра меньше, чем размер отдельной ячейки когерентности, то параметр вырождения фотоотсчетов на фотоприемнике для этого плеча пропорционален площади этой апертуры [формула (9.3.22)]. Диаметр наибольшего возможного коллектора в интерферометре Майкельсона, работающего в пределах земной атмосферы, равен 10 см (или, может быть, несколько меньше) большие размеры апертуры приводят к потере видности вследствие того, что в процессе измерения участвует более одной атмосферной ячейки когерентности. В интерферометре же интенсивностей, который нечувствителен к атмосферным искажениям фазы света, достигающего фотоприемник, могут быть использованы коллекторные апертуры значительно больших размеров, чем указанные выше. Например, интерферометр интенсивностей в Наррабри в Австралии имеет коллекторы диаметром 7 м. Таким образом, эффективный параметр вырождения фотоотсчетов регистрируемого света оказывается для этого интерферометра интенсивностей приблизительно в 70 раз больше, чем для сравнимого амплитудного интерферометра.  [c.481]


В этом интерферометр интенсивностей и звездный спекл-интерферометр удивительно сходны. Отношение сигнала к шуму, связанное с любым произведением флуктуаций числа фотоотсчетов для одного интервала счета, в интерферометре интенсивностей, как было показано, меньше единицы. Только усреднение по многим независимым произведениям флуктуаций числа фотоотсчетов может привести к улучшению характеристик устройства. Аналогия не оканчивается здесь. В случае интерферометра интенсивностей критическим параметром, определяющим основные характеристики, является параметр вырождения фотоотсчетов, т. е. среднее число фотособытий, создаваемое в отдельном интервале когерентности падаюш,его света. В случае звездного спекл-интерферометра подобную роль играет параметр Л —среднее  [c.492]

Физически параметр вырождения можно интерпретировать как среднее число фотоотсчетов за один интервал когерентности падающего излучения. Его можно также рассматривать как среднее число фотоотсчетов на степень свободы пли на моду падающей волны. Если бс <С 1, то с большой вероятностью число фотоотсчетов за один интервал когерентности волны будет не более единицы. Это означает, что дробовой шум преобладает над классическим шумом. Если же бс 1, то в каждом интервале когерентности волны будет много фотособытий. Происходит сгущение фотособытий из-за классических флуктуаций интенсивности и увеличение дисперсии числа фотоотсчетов до такой степени, что классические флуктуации становятся значительно более сильными, чем флуктуации типа дробового шума.  [c.455]

Но в одном частном и притом наиболее интересном случае, а именно когда речь ндет об излучении истинного теплового источника в видимой области спектра, возможно существенное упрощение анализа. Мы знаем, что благодаря малому параметру вырождения для света, испускаемого такими источниками, флуктуации числа фотоотсчетов определяются в основном чисто дробовым шумом. Мы не можем пренебрегать классическими флуктуациями числа фотоотсчетов при вычислении сигнальной компоненты на выходе, но мы можем пренебречь их вкладом, когда вычисляем шум, просто потому, что их вклад в шум очень мал.  [c.478]

Еще раз подчеркнем, что в выражении (9.5.17) мы имеем отношение сигнала к шуму только для произведения флуктуаций числа фотоотсчетов в одном интервале счета, построенного на фотоотсчетах в одном интервале то. Даже беглого взгляда на эту формулу достаточно, чтобы увидеть одну трудность. Так как параметр вырождения по предположению намного меньше единицы, а видность полос никогда не может превышать единицу, отношение сигнала к шуму (9.5.17) всегда намного меньше единицы Заметим, что это выражение не зависит от задаваемого интервала счета то- Поэтому отношение сигнала к шуму не улучшается при увеличении длительности счета счетчиков на выходе фотоприемников. Такнм образом, мы делаем вывод, что из данных измерения произведения флуктуаций числа фотоотсчетов невозможно извлечь информацию о  [c.479]


Смотреть страницы где упоминается термин Параметр вырождения фотоотсчетов : [c.472]    [c.479]   
Статистическая оптика (1988) -- [ c.455 ]



ПОИСК



Вырождение

Вырождение, параметр

Газ вырожденный

Фотоотсчет



© 2025 Mash-xxl.info Реклама на сайте