Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Элементы теории а-распада

Элементы теории а-распада  [c.134]

Курс современной экспериментальной ядерной физики (даже в элементарном изложении) должен содержать много вопросов, тесно примыкающих к теории, например понятие о теориях а- и р-распада, представление об изотопической инвариантности нуклон-нуклонных и мезон-нуклонных взаимодействий, понятие о странности описание различных моделей атомного ядра, элементы теории рассеяния и пр.  [c.13]


Рассматривая одно и то же движение точки в различных координатных системах, заметим, что в одной системе А) движение может представиться более сложным, чем в другой В). Если движение системы В) по отношению к системе А) несложно, то можно сказать, что сложное по отношению к системе (Л) движение точки распадается на два более простых одно по отношению к В) и другое, связанное с движением системы (В) по отношению к (Л). Тогда можно сначала определить кинематические элементы этих простых движений, а затем уже по общим формулам теории относительного движения, изложенной в настоящей главе, перейти и к элементам сложного, или, как говорят, составного, движения. В этой возможности разлагать сложное движение точки на более простые и заключается основное значение метода относительного движения.  [c.297]

Изложим здесь развитую в работе [3] теорию такого типа распада сплава замещения металлов А и В, в междоузлия кристаллической решетки которого внедрено относительно малое количество атомов какого-либо третьего элемента С. Пусть сплав имеет ГЦК решетку и атомы С внедрены в ее октаэдрические междоузлия. Рассмотрим слзгчай, когда при достаточно низких температурах из этого твердого раствора выпадает химическое соединение С с А и В, причем на г атомов С приходится з атомов А и В. Допустим, что атомы А и В могут присутствовать в исходном сплаве с любыми концентрациями. Один из частных случаев такого распада был рассмотрен термодинамически в работе Фастова и Финкельштейна 4], где предполагалось, что в исходном сплаве имеется малая  [c.224]

С открытием лазеров как источников коротких импульсов излучения в оптическом диапазоне электромагнитных волн появилась возможность наблюдения фотонного эха [67], являющегося оптическим аналогом спинового эха, а также свободного распада электронной поляризации [68] и других эффектов [69-71], обусловленных сложением фаз, т. е. когерентностью атомного ансамбля. Как мы увидим ниже, эволюция во времени недиагональных элементов матрицы плотности примесного центра определяет свободное затухание поляризации, различные типы фотонного эха и некоторые другие нелинейные явления. Эти эффекты получили название переходных. Их можно наблюдать лишь после возбуждения образца достаточно короткими световыми импульсами. Среди переходных эффектов наибольший интерес в настоящее время вызывает фотонное эхо, превратившееся в главный инструмент для исследования фазовой и энергетической релаксации электронных состояний примесных центров в твердых растворах. Достижениям теории в области описания фотонного эха и посвящена в основном данная глава.  [c.195]


Существует весьма веский аргумент в пользу априорного допущения теории, согласно которой энергия -распада (электронного или позитронного) равна максимальной энергии р-спектра радиоактивного элемента. Именно об этом упоминает Эллис, изучавший так называемую торцевую вилку. Торий С может перейти в торий В двумя путями. В первом случае сначала испускается р-частица и образуется ТЬС, а затем испускание а-частицы дает ТЬО. С другой стороны, ядро ТЬС сначала может испустить а-частицу, образовав ядро ТЬС , а затем -излучатель ТЬС" образует ТЬО (см. фиг. 7).  [c.52]

К началу 1968 года в результате длительных опытов удалось зарегистрировать около десяти случаев таких генетически связанных альфа-распадов. Новый короткоживущий излучатель давал альфа-частицы с энергией около 9,4 Мэв, что соответствовало предсказаниям теоретиков, С большой вероятностью это излучение можно было приписать элементу № 105, однако наблюдавшийся эффект был очень мал и неустойчив, а теория не слишком надежна.  [c.222]

Результаты, описанные как в этом, так и в предыдущем параграфе, имеют чисто газо-термодинамический характер. В них рассматривалось то или иное движение, возникшее при задании или при изменении скорости распространения пламени. Скорость пламени всегда считалась заданной относительно газа, по которому оно распространяется. Не принималась во внимание обратная зависимость скорости пламени от состояния газа, по которому оно распространяется, и от скорости его течения. В действительности всегда существует обратная связь. Изменение движения газа перед фронтом горения, его турбулизация, а также изменение распределения скоростей по сечению сосуда всегда влияют на скорость пламени. В результате горение становится нестационарным. В зависимости от условий возникают ускоряющиеся пламена, появляются высокочастотные пульсации и т. д. Двойные нестационарные разрывы являются элементом картины движения и в этих случаях. Они существенны для вычисления результатов, к которым приводит то или иное изменение скорости пламени относительно газа. В настоящее время благодаря существованию теории распада произвольного теплового разрыва и теории двойных нестационарных разрывов вычисления такой зависимости проводятся строго. Обратная  [c.413]

Более тщательные наблюдения позволяют обнаружить, что при турбулентном течении скорость и давление в фиксированной точке пространства не остаются постоянными во времени, а очень часто и очень неравномерно изменяются (см. рис. 16.17). Такие изменения скорости и давления, называемые пульсациями, являются наиболее характерным признаком турбулентности. Элементы жидкости, перемещающиеся как целое вдоль и поперек основного течения, представляют собой не отдельные молекулы (как в кинетической теории газов), а макроскопические, более или менее крупные образования (турбулентные массы ). Хотя при течении, например, в канале пульсации скорости составляют всего несколько процентов от средней скорости течения, тем не менее они имеют исключительное значение для развития всего течения. Пульсационное движение можно представить себе как следствие собственного движения турбулентных образований, налагающегося на осредненное движение. На трех последних снимках, изображенных яа рис. 18.1, такие образования хорошо заметны. В процессе турбулентного течения они все время то возникают, то распадаются. Их величина дает представление о масштабе турбулентности, т. е. о пространственном протяжении элементов турбулентности. Масштаб турбулентности определяется внешними условиями течения, например размером отверстий в выравнивающей решетке, через которую пропускается, жидкость. О некоторых количественных измерениях пульсационных скоростей будет сказано в 4 настоящей главы.  [c.502]

Превращение элементов наЬлюдаетса при распаде атомных ядер у радиоактивных элементов (теория распада Рутерфорда и Содди) и при разрушении атомов под действием обстрела их лучами а, представляющими собой ядра гелия, причем получаются ядра с меньшим числом зарядов.  [c.969]

Теория радиоактивного распада. Для объяснения радиоактивных явлений Рёзерфорд и Содди предложили в 1902 г. теорию атомного, распада, полностью подтвержденную дальнейшими экспериментами. Атомы радиоактивных элементов являются неустойчивыми образованиями и подвержены самопроизвольному распаду, подчиненному закону случайности. При этом освобождается внутриатомная энергия в виде излучений, атом же претерпевает превращение, переходя в другой химич. элемент с совершенно иными свойствами, напр, металл Ка превращается в КаЕт—инертный газ. Основной закон радиоактивного распада формулируется след, обр. количество вещества А] Г, распадающегося в элемент времени Дi, пропорционально наличному его количеству N и промежутку времени At, т. е. АМ==-Ш М,  [c.369]


Явления радиоактивного распа да, сопровож аемо-го вылетом из ядра атома а- и / -частиц, дали первое доказательство сложного строения атомного ядра, заключающего в качестве структурных элементов электроны, протоны и ядра Не. Закономерности, наблюдаемые в распределении длин волн у-лучей и скоростей /5- и а-частиц, указывают на существование в ядре устойчивых состояний, соответствующих определенным уровням энергии, у-излучения повидимому связаны с внутриядерными переходами а-частиц с одного уровня энергии на другой, причем длина волны у-луча определяется из квантовых соотношений. При радиоактивном превращении, сопровождаемом вылетом а-частицы из ядра, она должна пройти через уровень потенциальной энергии, значительнб превышающий собственную энергию частички, к-рой она обладает в ядре. С точки зрения классич. теории невозможно объяснить вылет а-частички из ядра через этот потенциальный барьер . Теории радиоактивного распада, основанные на принципах волновой механики, описывают движение а-частиц при помощи волновой функции, причем а-излучение является результатам постепенного проникновения волновой функции через вышеупомянутый потенциальный барьер. При этом можно найти теоретическое выражение для связи скорости а-частиц с константой распада атома, удовлетворяющее опытным данным. Принимая, что а-частички в ядре атома обладают той же величиной энергии, с какой они покидают ядро при распаде, мы пс-лучаем исходную величину для оценки абсолютных значений уровней энергии в ядре атома. Эти величины порядка 106У (в обозначениях атомной физики), -излучения радиоактивных элементов образуют, с од-1той стороны, группы электронов определенных скоростей, по всей вероятности появляющихся в резуль-  [c.369]

В частности, во второй книге рассмотрены основы теории дейтрона, свойства ядерных сил, нуклон-нуклонные взаимодействия при низких, высоких и сверхвысоких энергиях, формфакторы нуклонов и ядер, свойства антинуклонов и антиядер, свойства лептонов, п-мезонов, странных, очарованных и прелестных частиц, резонансов, систематика, адронов на основе унитарной симметрии и кварковой модели, дополнительные вопросы физики слабых взаимодействий универсальная (У-А)-теория и элементы теории электрослабого взаимодействия, открытие слабых нейтральных токов и IV-- и г°-бозонов, вопрос о массе нейтрино и связь его с нейтринными осцилляциями и двойным безнейтринным 3-распадом и др.  [c.3]

Неравновесные плазменные явления приводят также к тому, что нлазма не только мощно излучает, но и становится турбулентной за счёт того, что определ. типы возбуждаемых волн и колебаний либо задерживаются в плазме долго либо вообще не моГут покинуть плазму напр., ленгмюровские колебания). Это позволяет найти путь для решения проблемы т. н. <4обойдённых элементов в теории происхождения элементов во Вселенной. Наиб, распространённая теория происхождения элементов предполагает, что из исходных протонов и нейтронов элементы образуются путём последоват. захвата нейтронов, а когда новы11 изотоп перегружен нейтронами, то в результате его радиоактивного распада с испусканием электрона и антинейтрино возникает новый элемент. Однако есть обойдённые элементы нанр., дейтерий, литий, бор и т. д.), образование к-рых нельзя объяснить захватом нейтронов их происхождение, возможно, связано с ускорением заряж. частиц в областях с высокой степенью плазменной турбулентности и последующими ядер-ными реакциями ускоренных частиц.  [c.470]

Исключительное значение для обоснования электрохимического механизма коррозии имели работы выдающихся ученых Деви и Фарадея, устан01вивших законы электролиза, швейцарского химика Де-ля-Рива, объяснившего растворение цинка в кислоте действием микро-гальваничес ких элементов, русских физико-химиков Н. Н. Бекетова, исследо1вавшего в 1865 г, явления вытеснения из растворов одних металлов другими, и Н. Н. Каяндера, пришедшего в 1881 г. к выводу, что растворенные вещества распадаются на составные части, а также шведского химика Аррениуса, сформулировавшего в 1887 г. теорию электролитической диссоциации, и немецкого физико-химика Нернста, опубликовавшего в 1888 г. теорию электродных и диффузионных потенциалов.  [c.5]

Задача об определении напряжений и деформаций в упругом твердом теле под действием данных массовых сил и при заданных поверхностных силах, или при условии, что под действием этих последних поверхность тела принимает заданную форму, приводится к аналитической задаче об определении функций, выражающих проекции смещения. Эти функции должны удовлетворять всем диференциальным уравнениям равновесия в каждой точке внутри тела, а также некоторым условиям на его поверхности. Методы, предложенные для интегрирования этих уравнений, распадаются на два класса. Методы одного из этих дбух классов состоят в том, что сначала разыскиваются частные решения для того чтобы удовлетворить граничным условиям, решение представляют в виде конечного или бесконечного ряда, состоящего из частных решений. Частные решения обычно могут быть выражены через гармонические функции. Этот метод решения можно рассматривать, как обобщение разложения по сферическим функциям или обобщение тригонометрических рядов. Методы второго класса состоят в том, что искомую величину выражают в виде определенного интеграла, элементы которого имеют особые точки, распределенные по поверхности или объему, тот тип решения является обобщением методов, которые Грин ввел в теорию потенциала. К моменту открытия общих уравнений теории упругости, метод рядов был уже применен к астрономическим, акустический проблемам и к проблемам теплопроводности ), а метод решений, имеющих особые точки, еще не был изобретен ). Ламе и Клапейрон ) первые применили метод разложения в ряд к проблемам равновесия упругих твердых тел. Они рассматривали случай тела, ограниченного бесконечной плоскбстЬю и находящегося под давлением, распределенным по какому-либо вакону. Позже Ламе °) рассматривал проблему тела, ограниченного сферической поверхностью и деформируемого данными повер ностными силами. Задача а распределении напряжений в полупространстве, ограниченном плоскостью, в основном совпадает с проблемой передачи внутрь тела действия силы, при-  [c.28]


Нефть и природный газ состоят главным образом из углеводородов (соединений углерода и водорода), а также в небольшом количестве из других элементов (серы, азота, кислорода и т.д.). Нефть содержит 82-87 % углерода и 11-14 % водорода. По вопросу происхождения нефти существуют различные точки зрения. Наиболее признанной является теория, согласно которой газ и нефть состоят из органических веществ, главным образом животного происхождения (некоторые ученые полагают, что нефть и газ во многих случаях образовались в глубинах земли в результате действия воды на карбиды металлов). Живые организмы, погибшие и опустившиеся на морское дно, попадают в такие условия, где они не мо-( т ни распадаться в результате окисления, ни уничтожаться микроорганизмами, а вследствие отсутствия контакта с воздухом образуют илистые осадки. В результате геологических движений эти осадки проникают на большие глубины. Там под влиянием давления и высокой температуры, а возможно, и под воздействием микроорганизмов в течение миллионов лет проходит процесс сухой возгонки, при котором содержащийся в осадках углерод в большей своей части переходит в углеводородные соединения, в то время как большая часть кислорода и других элементов мигрирует. Жидкая субстанция, состоящая главным образом из смеси различных по молекулярному весу углеводородов, может и самостоятельно мигрировать, проникая через поры и трещины земных недр. Основными составными частями природного газа являются низкомолекулярные углеводороды (прежде всего метан и этан), нефть же представляет собой вь1-сокомолекулярные углеводороды.  [c.33]


Смотреть страницы где упоминается термин Элементы теории а-распада : [c.183]    [c.80]    [c.365]    [c.166]    [c.172]    [c.269]    [c.40]    [c.14]    [c.472]   
Смотреть главы в:

Введение в ядерную физику  -> Элементы теории а-распада

Экспериментальная ядерная физика Кн.2  -> Элементы теории а-распада



ПОИСК



V°-Распад

Теория а-распада



© 2025 Mash-xxl.info Реклама на сайте