Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Малые колебания консервативной системы около положения равновесия

Малые колебания консервативной системы около положения равновесия  [c.489]

Линейные консервативные системы. Собственные частоты и нормальные колебания. Зависимость собственных частот от параметров системы. Согласно результатам п. 2 настоящего параграфа задача о малых колебаниях консервативной системы около положения равновесия приводится к интегрированию уравнений Лагранжа, в которых кинетическая энергия Т является однородной квадратичной формой относительно обобщенных скоростей, а  [c.250]


Дифференциальные уравнения малых свободных колебаний консервативной системы около положения устойчивого равновесия можно составить теперь, применяя метод кинетостатики. Для этого следует силы Fs заменить силами инерции (Fs = = —mVs)] выражения обобщенных сил Qi по (72) при этом  [c.574]

Одним из наиболее плодотворных применений уравнений Лагранжа 2-го рода является изучение малых колебаний механических систем около положения равновесия. Мы ограничимся рассмотрением случая малых свободных колебаний механической системы, имеющей s степеней свободы, около положения устойчивого равновесия. Как было указано, потенциальная энергия системы V qu <72, .., < s) определяется с точностью до произвольной постоянной. Мы можем выбрать начало отсчета координат qt, 2,. . qs таким образом, чтобы положению равновесия соответствовали значения i=0, 2=0,. . s = 0 и Vo=0. Кроме того, в главе VI раздела Кинетика мы доказали, что при равновесии консервативной системы имеют место следующие условия  [c.501]

Малые колебания консервативной системы с двумя степенями свободы около положения устойчивого равновесия  [c.478]

Таким образом, малые колебания консервативной системы с двумя степенями свободы около положения устойчивого равновесия описываются двумя линейными однородными дифференциальными уравнениям второго порядка с постоянными коэффициентами. Решение этих уравнений будем искать в форме  [c.480]

Возвратимся к теории малых колебаний системы около положения ее устойчивого равновесия. Сначала рассмотрим свободные колебания системы в консервативном силовом поле. В этом случае движение системы полностью определяется выражениями ее кинетической и потенциальной энергий. Как было показано в 88, кинетическая и потенциальная энергии представляются в виде положительно определенных квадратичных форм  [c.231]

Уравнения (I) описывают малые свободные колебания около положения равновесия. При уменьшении затухания (элементы -> 0) поведение системы приближается к поведению консервативной системы, свободные колебания которой описываются уравнением  [c.330]

До сих пор мы рассматривали свободные колебания консервативной системы с одной степенью свободы около положения устойчивого равновесия. При отсутствии сил сопротивления дифференциальное уравнение малых колебаний имеет вид  [c.468]


Надлежащим выбором начала отсчета энергии устраняется первый член правой части. Однако второй член также исчезнет, если разложение провести относительно такого состояния, которое соответствует положению равновесия. В консервативных системах положения равновесия характеризуются экстремальными значениями потенциальной энергии и для них первые производные обращаются в нуль. Если положение равновесия устойчиво, то потенциальная энергия имеет в нем минимум, и следовательно, третий член разложения должен быть в этом случае положительной квадратичной формой координат системы. Далее мы будем рассматривать малые колебания около положения равновесия и поэтому сможем пренебрегать членами высших порядков. Это полностью соответствует обычной при методе малых колебаний линеаризации уравнений движения. Если использовать обозначения  [c.272]

Равновесное положение консервативной системы является устойчивым, если система, равновесие которой нарушено малым начальным отклонением qjf и малой начальной скоростью ()уо. совершает малые колебания около этого равновесного положения. Иначе, равновесное положение системы считается устойчивым, если при начальных отклонениях  [c.7]

Глава XIII. МАЛЫЕ КОЛЕБАНИЯ КОНСЕРВАТИВНОЙ СИСТЕМЫ ОКОЛО ПОЛОЖЕНИЯ РАВНОВЕСИЯ  [c.346]

Теория малых колебаний динамической системы около положения относительного равновесия по отношению к реальной или воображаемой твердой системе отсчета, вращающейся с постоянной угловой скоростью около неподвижной оси, отличается в некоторых существенных чертах от теории малых колебаний около положения абсолютного равновесия, о которой мы говорили в 168. Необходимо поэтому уделить некоторое внимание общей теории, прежде чем заняться исследованием специальных проблем. Система, которую мы исследуем, может быть oBepuienno свободна или может быть связана с вращающимся твердым телом. Во втором случае предполагается, что как реакции связи, так и внутренние силы системы являются консервативными.  [c.385]

В тексте мы рассматривали уравнения малых колебаний для голо-номной системы со связями, не зависящими от времени, и находящейся под действием консервативных сил. Если система допускает игнорируемые координаты и вычисляется приведенная функция Лагранжа, то появляются, как мы знаем (гл. V, п. 46), гиростатические члены. В п. 24 мы указали форму (30), которая в этом случае свойственна уравнениям малых колебаний около положения устойчивого равновесия было показано, что гиростатические члены не влияют на интеграл энергии, из рассмотрения которого также и в этом случае становится очевидной устойчивость на основании критерия Дирихле.  [c.414]

Равновесие механич. системы устойчиво, если при малом возмущении (смещении, толчке) точки системы во всё последующее время мало отклоняются от равновесных положений в противном случае равновесие неустойчиво. Обычно при малых возмущениях точки системы, находящейся в положении устойчивого равновесия, совершают около их равновесных положений малые колебания, к-рые вследствие сопротивлений со временем затухают, и равновесие восстанавливается. Более строго У. р. определяется и исследуется так же, как и устойчивость движения. В случае механич. консервативной системы достаточное условие У. р. даётся теоремой Лагранжа — Дирихле, согласно к-рой равновесие устойчиво, если в положении равновесия потенц. энергия системы минимальна. См. также Устойчивость упругих систем.  [c.797]


Смотреть главы в:

Теоретическая механика  -> Малые колебания консервативной системы около положения равновесия



ПОИСК



Колебания малые

Колебания около положения равновесия

Колебания системы около положения равновесия

Консервативная система

Консервативность системы

Консервативные

Малые колебания консервативной

Малые колебания консервативной системы

Малые колебания консервативной системы около положения равновесия Теорема Лагранжа об устойчивости положения равновесия

Малые колебания консервативной системы с двумя степенями свободы около положения устойчивого равновесия

Малые колебания консервативной системы с одной степенью свободы около положения устойчивого равновесия

Малые колебания около положения равновесия

Малые колебания системы

Равновесие системы тел

Равновесия положение

Равновесия положение в малом

Система малых ЭВМ



© 2025 Mash-xxl.info Реклама на сайте