Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Экспериментальное определение температуры при сварке

Экспериментальное определение температуры при сварке  [c.203]

Основой для расчетов нагрева и плавления металла при сварке служат уравнения и формулы, полученные в гл. 6. Их используют для качественной оценки температурных полей, а также для количественных расчетов при определении термических циклов сварки, скоростей охлаждения, размеров зон термического влияния и т. д. Следует заметить, что в ряде случаев реальные процессы и явления протекают сложнее, чем это описывается формулами. Часто характер теплового воздействия при сварке, условия распространения теплоты и теплоотдачи от свариваемых деталей настолько сложны или неопределенны, что расчетное определение температур становится либо затрудненным, либо настолько неточным, что его использование оказывается неоправданным. Экспериментальное определение температур при сварке имеет свои преимущества перед расчетным, хотя и уступает ему в возможности получения и анализа общих закономерностей. Правильным следует считать подход, при котором оба метода дополняют друг друга, а решение об использовании того или иного метода принимается с учетом конкретной обстановки и поставленных задач.  [c.203]


Существует много методов экспериментального определения температур [И]. Рассмотрим лишь те, которые используют при сварке. Один из простейших методов состоит в использовании индикаторов температуры, например, термокрасок или термокарандашей. Некоторые термокраски меняют цвет непрерывно (в диапазоне 400...700 К) и позволяют наблюдать положение изотермических линий. Другие краски резко меняют свой цвет при определенной температуре и сохраняют его в дальнейшем. Существуют краски для диапазона температур 300... 1800 К с од-H0-, двух-, трех- и четырехкратным изменением цвета при различных температурах. Термокарандаши изготовляют для диапазона 340...950 К с градацией в 50...80 К. Нанося различными термокарандашами риски, как мелом, можно быстро определить распределение температур по изменению цвета, например зеленого в коричневый, голубого в бежевый и т. д. С их помощью можно определить размеры зоны, нагретой до определенной температуры, момент времени, при котором достигается заданная температура. Этот метод удобен также для определения температуры подогрева перед сваркой. Точность измерения составляет несколько кельвин. Подробные сведения о цветовых индикаторах температуры, основанных на различных химических и физических явлениях, можно найти в работе [1].  [c.203]

Определение полного состава газовой фазы в зоне сварки при температурах сварочного процесса представляет значительные экспериментальные и теоретические затруднения. В настоящее время с большей или меньшей степенью точности определен состав газов, выделяющихся при сварке углеродистых сталей качественными электродами и под флюсом, охлажденных до комнатной температуры (см. табл. 15).  [c.89]

Указанные допущения позволяют получить стройную теорию распределения температуры в телах при нагреве их различными движущимися источниками теплоты. Эта теория хорошо отражает качественную картину, а в ряде случаев дает также и достаточную для технических расчетов точность описания сварочных процессов. Наибольшие погрешности в описании полей температур наблюдаются в зонах вблизи действия источников теплоты. В отдельных точках, где находятся сосредоточенные источники, расчетная температура достигает бесконечно больших значений. Определение температур в этих зонах в целях установления их значений по изложенным здесь методикам производить не следует. Математический аппарат теории, дополненный экспериментальными данными, а также описанием существа физических явлений, является удобным инструментом для выражения процессов распространения теплоты при сварке.  [c.403]


Некоторые схемы расчета изотерм температуры плавления при сварке с введением дополнительных экспериментально определенных коэффициентов, приведены в гл. VI.  [c.193]

Чистые металлы и эвтектические сплавы не имеют эффективного интервала кристаллизации они затвердевают практически при постоянной температуре. Однако горячие трещины образуются при сварке и этих материалов. Основной причиной их охрупчивания является локализация деформации в результате концентрации растягивающих напряжений по структурно несовершенным границам зерен. Экспериментальные трудности определения нижней границы температурного интервала хрупкости и деформаций металла в процессе его кристаллизации при сварке затрудняют расчетное определение возможности появления горячих трещин в реальных сварных соединениях. Для практической оценки склонности сварных соединений к образованию горячих трещин обычно используют результаты сравнительных испытаний, полученные при сварке специальных технологических образцов, которые изготовлены из материала свариваемой конструкции и имитируют ее соединения. Установленные для каждого такого образца размеры и технология сварки обеспечивают соединению условия, необходимые для образования горячих трещин. Стойкость сварных соединений алюминия и его сплавов против образования горячих трещин чаще всего определяют по результатам сварки технологических образцов  [c.77]

Выше отмечалась условность деления процесса образования соединения при ультразвуковой сварке на стадии. По-видимому, при определенной температуре дальнейшее теплообразование в месте сварки будет протекать одновременно с процессом возникновения и усиления связей между контактирующими поверхностями, Однако такое деление позволяет проводить раздельное, экспериментальное и теоретическое изучение различных по своей природе процессов нагрева пластмасс и образования связей, что и используется при изучении процесса ультразвуковой сварки пластмасс.  [c.53]

Увеличение размеров конструкций (толщин стенок S до 500 мм у атомных и химических реакторов, до 70 мм у надводных судов, до 150 мм у корпусов турбин, до 100 мм у глубоководных аппаратов), широкое применение сварки, использование (особенно в ракетной и авиационной технике) высокопрочных материалов пониженной пластичности, интенсивное развитие криогенной техники, промышленное строительство в районах Сибири и Крайнего Севера с низкими климатическими температурами выдвинули задачу расчетов прочности и надежности конструкций в связи с возникновением хрупких состояний. Решение этой задачи потребовало разработки методов определения предельных нагрузок и критических температур с учетом основных конструктивных, технологических и эксплуатационных факторов. Существенное значение при этом имеет создание основ и широкое экспериментальное исследование в области линейной и нелинейной механики разрушения, а также распространение законов механики однократного разрушения на анализ процессов циклического разрушения.  [c.67]

Распределение Нд по объему сварного соединения и его концентрацию в любой заданной точке определяют экспериментальнорасчетным способом. Способ состоит в экспериментальном определении исходной концентрации диффузионного водорода в металле шва Нш(0), установлении зависимости коэффициента диффузии водорода от температуры для шва, ЗТВ и основного металла и параметров перехода остаточного (металлургического) водорода Но в основном металле в Нд и обратно при сварочном нагреве и охлаждении. Расчетная часть заключается в решении тепловой задачи для заданных типа сварного соединения, режима сварки и решения диффузионной задачи. Последняя для сварки однородных материалов представляет ч 1Сленное решение дифференциального уравнения второго закона Фика, описывающего неизотермическую диффузию водорода с учетом термодиффузионных потоков в двумерной системе координат  [c.534]


Экспериментальные работы велись с применением полосовых сталей толщиной Ю и 14 мм марок Ст.Зсп, Ст.5, Ст.20 и 09Г2С. Для каждого исследуемого режима сварки при определенной температуре окружающего воздуха из брусков размером 10X10X150 мм собирались составные пластины для наплавки валиков. На концах составной пластины устанавливались приставные планки с размерами по ГОСТу 6996—96. Валик экспериментальной сварки наплавлялся по продольной оси симметрии.  [c.66]

Критериями при определении диапазона режимов сварки и температур предварительного подофева служат допустимые максимальная и минимальная скорости охлаждения металла околошовной зоны. Максимально допустимые скорости охлаждения сталей принимаются таким образом, чтобы предотвратить образование холодных трещин в металле околошовной зоны. Величину этой скорости охлаждения определяют экспериментальным путем по результатам испытаний технологических проб или же расчетным путем.  [c.293]

Рассмотренный кратко термодеформационный цикл сварки, обусловливая появление уравновешенных упругих деформаций в зоне сварного соединения, приводит к возникновению остаточных сварочных напряжений в сварном соединении. В зонах, где должны происходить деформации сжатия, возникают растягивающие остаточные напряжения, а уравновешивающие их сжимающие напряжения соответственно появляются в зонах с деформацией растяжения. На величину и распределение остаточных напряжений кроме неравномерных деформаций изменения объема металла при охлаждении оказывают влияние и объемные изменения, протекающие ниже температуры распада аустенита. Эти изменения у различных сталей протекают по-разиому и зависят от содержания в стали углерода и легирующих элементов. На рис. 4 представлена схема распределения остаточных напряжений в сварном соединении. Уровень напряжений и размеры растянутых и сжатых зон зависят от условий сварки и состава свариваемой стали. По данным табл. 2 можно судить о роли состава стали в возникновении остаточных напряжений в сварном соединении. Экспериментально определенные величина и распределение остаточных напряжений в сварных соединениях труб с толщиной стеики 30—36 м.м из стали 15ХМ, выполненных ручной дуговой сваркой с получением металла шва близкого состава, приведены на рис. 5.  [c.408]

Технология диффузионной сварки стеклометаллических соединений. При разработке технологии диффузионной сварки конкретных материалов оптимальные параметры режима определяются опытным путем. Типичная кривая изменения вязкости стекол при нагревании показана на рис. 1, где заштрихованная область определяет температуру диффузионной сварки. При разработке технологии диффузионной сварки на примере стекла ЛК-4 было экспериментально установлено, что при температуре 823 К стекло начинает деформироваться под действием сжимающих напряжений, превышающих 5 МПа, в то время как при более низкой температуре, равной 773 К, критическое напряжение сжатия возрастает до 14,5 МПа. Для стекла марки К-8 область на зла деформации стекла под нагрузкой смещена в сторону более высоких температур и находится между 853 и 893 К. Поэтохму для определения температуры сварки конкретного стекла со стеклом или металлом необходимо знать температуру начала пластической деформации под действием сжимающей нагрузки. При этом удельная сжимающая нагрузка должна обеспечивать протекание необходимой микропластической деформации в зоне соединения, по крайней мере достаточной для образования полного контакта соединяемых поверхностей. Практика подтверждает, что при правильно выбранной температуре сварки величина сжимающей нагрузки составляет 2— 8 МПа, тогда при изотермической выдержке 20—40 мин происходит достаточная микропластическая дефор.мация соединяемых поверхностей для обеспечения контакта по всей соединяемой поверхности.  [c.222]

Анализ превращений в сталях при охлаждении в процессе сварки выполняют с помощью так называемых с анизотернических диаграмм превращения (распада) аустенита- (АРА) применительно к термическим условиям сварки. Их строят на основе экспериментальных данных, получаемых с помощью дилатометрического или термического метода анализа. Дилатометрический метод основан на регистрации изменений размера определенным образом выбранной базы на свободном незакрепленном образце в процессе его нагрева и охлаждения (рис. 13.18). В сварочных быстродействующих дилатометрах применяют плоские или полые цилиндрические образцы ограниченных размеров (например, 1,5X10X100 мм или диаметром 6 мм с толщиной стенки 1 мм). В образцах воспроизводится сварочный термический (СТЦ) или сварочный термодеформационный (СТДЦ) циклы. Нагрев образцов осуществляется проходящим электрическим током, радиационным нагревом или токами высокой частоты. Необходимое условие нагрева — равномерное распределение температуры на  [c.518]


Смотреть страницы где упоминается термин Экспериментальное определение температуры при сварке : [c.859]    [c.235]    [c.168]   
Смотреть главы в:

Теория сварочных процессов  -> Экспериментальное определение температуры при сварке



ПОИСК



Сварка (определение)

Температура определение



© 2025 Mash-xxl.info Реклама на сайте