Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электронно-лучевые источники

Электронно-лучевые источники  [c.106]

Существует большое число способов пайки, например (по источнику нагрева) паяльником (простейший способ), погружением в расплавленный припой, газопламенный, лазерный, электронно-лучевой и др. (Подробнее см. ГОСТ 17349—79. Пайка. Классификация способов ГОСТ 17325—79. Пайка и лужение. Основные термины и определения.)  [c.277]

Основные параметры режима электронно-лучевой сварки — сила тока, напряжение электронного луча, скорость сварки. Ускоряющее напряжение и сила тока луча определяют мощность источника энергии.  [c.16]


Для сталей III группы (среднеуглеродистых среднелегированных, содержащих карбидообразующие элементы) при сварке в широком диапазоне режимов характерно мартенситное превращение. Для них важно значение />ю, поскольку гомогенизация аустенита и рост зерна в связи с наличием специальных карбидов в исходной структуре замедлены и их можно регулировать с помощью режима сварки. Поэтому для получения благоприятной структуры при сварке этих сталей эффективно снижение q/v, применение концентрированных источников теплоты (плазменной, электронно-лучевой и лазерной сварки). Так-  [c.528]

Основным измерительным элементом электронного (катодного) осциллографа является электронно-лучевая трубка. Ее основными преимуществами по сравнению с вибраторами являются ничтожно малое потребление мощности от испытываемого источника напряжения и отсутствие инерции. Электронный осциллограф позволяет исследовать процессы, частота которых достигает сотен мегагерц.  [c.182]

Покрытия были получены с применением электронно-лучевой технологии. Материал покрытия испаряли в вакууме сфокусированным электронным лучом и осаждали на нагретую до 900— 1000" С поверхность образцов. Равномерность толщины покрытия обеспечивали вращением образцов над источником паров. Скорость осаждения составляла 2 мкм/мин. Толщина покрытий 30—80 мкм.  [c.215]

С освоением низкотемпературной плазмы, электронного луча в вакууме и луча квантового оптического генератора появилась возможность концентрировать энергию источника в малых объемах, а значит, точно ее дозировать, с большим совершенством управлять технологическими процессами. Это открыло дорогу их применению в качестве энергетических источников для получения композиционных материа-. лов. Пользуясь плазменным и электронно-лучевым напылением, можно металлизировать высокопрочные высокомодульные волокна бора, карбида кремния и> бериллия в доли миллиметра, не разрушая их.  [c.140]

В настоящее время сварные соединения можно образовывать двумя принципиально разными способами действием тепла при температурах плавления металлов или использованием явления схватывания металлов (ультразвук, холодная сварка и др.). Большие перспективы открывают возникшие в последнее время новые виды сварки — концентрированным потоком электронов в вакууме (электронно-лучевая сварка) и когерентным лучом (лазеры). При этих видах сварки можно проплавлять металл узким кинжальным швом, вследствие чего не требуется разделки кромок под сварку, снижаются термические деформации и повышается стойкость швов к образованию горячих трещин. Использование новых высококонцентрированных источников нагрева с предельно малым термическим воздействием, т. е. оказывающим наименьшее отрицательное влияние на изменение свойств основного металла (что является одной из важных задач технологии сварки новых материалов, в особенности высокопрочных и стойких против коррозии), приведет к значительному уменьшению объемов доводимого до расплавления  [c.143]


Стрелочные и цифровые индикаторы используются для индикации сигналов лишь одного источника и применяются при автоматическом или полуавтоматическом слежении за каким-либо параметром сигнала. Электронно-лучевые индикаторы позволяют отображать данные о нескольких параметрах сигнала. Типовые электронно-лучевые индикаторы приведены на рис. 7.8.  [c.331]

Электронно-лучевая плавка. Электронно-лучевая плавка представляет собой новый способ переплавки тугоплавких металлов в слитки высокой степени чистоты. При этом способе плавки в качестве источника тепла используется пучок электронов, движущихся с большой скоростью. Электроны  [c.24]

Лазерную сварку малых толщин широко применяют в электронной и радиотехнической промышленности для сварки проводов, элементов микросхем, пружин и т.п. деталей, в производстве и при ремонте вакуумных приборов (кинескопов, электронно-лучевых трубок и т.д.), герметизации корпусов различных приборов и устройств и во многих других процессах. В этой отрасли все чаще для сварки применяют полупроводниковые лазеры, а также мощные некогерентные источники  [c.246]

При сварке плавлением используют также высококонцентрированные источники тепла электронный луч и световой луч, излучаемый оптическим квантовым генератором-лазером. Электронно-лучевая  [c.8]

Широкое применение новых конструкционных материалов на основе тугоплавких и высокоактивных металлов (титан, цирконий, молибден, вольфрам и др.) потребовало создания способа их обработки источником тепла с высокой плотностью энергии в условиях защиты от взаимодействия с газами воздуха (кислород, азот). Наиболее полно этим условиям отвечает электронно-лучевая технология.  [c.244]

При электронно-лучевой сварке кинетическая энергия пучка электронов используется для расплавления стыка примыкающих друг к другу деталей и образования сварного шва. Электронный луч обеспечивает высокую удельную мощность на поверхности пятна нагрева. По этому показателю (табл. 24) электронный луч почти одинаков со световым лучом оптического квантового генератора (лазера) и существенно превосходит традиционные источники нагрева, применяемые при сварке.  [c.244]

В сварочных установках (рис. 131) электронно-лучевая пушка 1, соединенная с источником питания 2, встраивается в вакуумную камеру  [c.252]

В качестве источника ионов применяют специальные плазмотроны или другие устройства, в которых ионизируется какой-либо элемент, например инертный газ — гелий. Удельная мощность в пятне нагрева при действии ионного пучка значительно ниже, чем при электронно-лучевом нагреве.  [c.454]

Электронно-лучевой источник (EBIS). В этом источнике образование вьтсокозарядных ионов происходит в результате длительного (сотни мс) времени взаимодействия низкозарядных ионов с интенсивным электронным пучком с энергией в неск. десятков кэВ и плотностью тока до 1000 А/см . Такие времена взаимодействия обеспечиваются удержанием ионов в потенц. яме, образованной в ради-  [c.196]

Следовательно, представление электронно-лучевого источника тепла распределением Гаусса с параметрами одномерных распределений оправдано при диаметрах электронного луча > I. При малых же диамет-рах электронного луча р I, когда расхождения значительны, следует учитывать пространственность распределения энергетических потерь электронов.  [c.22]

В качестве источника теплоты при электрической сварке плавлением можно использовать различные источники — электрическую дугу (электродуговая сварка), теплоту шлаковой ванны (электрошлаковая сварка), теплоту струи ионизированных газов холодной пла. злгы (плазменная сварка), теплоту, выделяемую в изделии в результате преобразования кинетической энергии электронов (электронно-лучевая сварка), теплоту когерентного светового луча лазера (лазерная сварка) и некоторые другие.  [c.4]

Значительно более жесткие требования по точности выполнения устанавливаемых режимов предъявляются к манипуляторам и механизмам перемещения сварочного источника теплоты в автоматизированных установках. Допустимы следуюн(ие колебания скорости перемещения при сварке под флюсом 5% при аргонодуговой сварке тонколистовых металлов 2% в установках для электронно-лучевой и лазерной сварки менее ztl%. Точность установки свариваемых изделий и отклонение положения стыка при сварке не должно нревын1ать 20—25% поперечного размера площади пятна ввода теплоты в изделие, т. е. при сварке под флюсом это составляет J —2 мм при микроплазмен-ной — не более 0,25 мм нри электронно-лучевой и лазерной (в зависимости от диаметра луча) от tO,l мм до 10 мкм.  [c.123]


Лучевые источники энергии используют при сварке электрон шм лучом, лазерной сварке и световой сварке. При сварке электронным лучом носителем энергии являются электроны, при лазерной и све-, ТОБОЙ — фотойы.  [c.14]

Сварочная ванна перемещается по свариваемому изделию вместе с источником теплоты. После затвердевания расплавленного металла сварочйой ванны образуется шов. Поперечное сечение переплавленного металла условно делят на площадь наплавки F и площадь проплавления основного металла Fo (рис. 12.13). Очертания зоны проплавления основного металла характеризуется коэффициентом формы проплавления i )np = = b/h или относительной глубиной проплавления h/b, а также коэффициентом полноты проплавления ц р= Fo/(bh). Очертание зоны наплавки характеризуется коэффициентом формы валика ) =Ь/с и полноты валика i =FJ b ). Глубина и форма проплавления зависят от сосредоточенности источника теплоты, определяемой способом сварки и силой сварочного тока. Так, заглубление сварочных ванн имеет место при электронно-лучевой и лазерной сварке, а также при дуговой сварке легких металлов с использованием тока большой плотности. На рис. 12.14 показаны формы поперечных сечений швов при различных способах сварки.  [c.446]

САМООРГАННЗАЦРШ В ЭЛЕКТРОННО ЛУЧЕВОЙ ТЕХНОЛОГИИ МЕТОДЫ РАСЧЕТА ТЕРМИЧЕСКОГО КПД ДЛЯ РАЗЛИЧНЫХ СХЕМ СВАРОЧНЫХ ИСТОЧНИКОВ ТЕПЛА  [c.128]

При помощи подобных опытов можно определить удельный заряд других электрически заряженных частиц, например протонов (яцер водорода), а-частиц (ядер гелия), и убедиться в справедливости второго закона Ньютона в форме (3.24) для случая, когда и с (конечно, в этих опытах вместо электронно-лучевой трубки нужно пользоваться источниками, испускающими соответственно протоны или а-частицы с не слишком большими скоростями). Отметим, кстати, что опыты по определению удельного заряда различных частиц являются одним из важнейших методов определения природы этих частиц (так называемая масс-спектрография).  [c.99]

Электронно-лучевая трубка (рис. 127) представляет собой коническую колбу с удлиненной горловиной, заканчивающейся цоколем 1 с металлическими выводами. В начале горловины помещается электронная пущка — устройство для создания фокусированного пучка электронов. Источник электронов состоит из подогревного катода 2, выполненного в виде небольшого цилиндра с излучающим слоем на его торцевой поверхности и расположенного внутри так называемой сетки 3, представляющей собой металлический цилиндр с выходным отверстием малого диаметра. Сетка имеет относительно катода отрицательный потенциал, изменением которого можно регулировать плотность электронов в пучке и таким образом менять яркость светящегося катодного пятна. Благодаря сетке электроны, вылетающие из раскаленного катода, движутся в виде узкого пучка—  [c.182]

Дальнейшее развитие этот метод получил в профилоскопе, в котором в качестве управляемого источника света использована электронно-лучевая трубка [34] и применен компенсационный метод измерения высот неровностей.  [c.122]

Металлические пленки наносили на полированные поверхности сапфира, кварца и графита испарением металла с помощью электронно-лучевого нагрева в вакууме 1 10 мм рт. ст. Источником испарения служила капля расплава, возникающая на конце вертикально расположенного стержня напыляемого металла диаметра 2—3 мм, на который фркусировался электронный луч, скорость напыления была 1—10 Kj eK. Температура подложки во время напыления составляла 100—200° С.  [c.16]

Среди актуальных задач современной электроники важное место отводится созданию стабильных автоэмиссионных катодов, способных длительное время работать в условиях высокого технического вакуума (10 —10 мм рт. ст.). Преимущества автоэлектронных катодов по сравнению с другими видами источников свободных электронов хорошо известны. К их числу относятся отсутствие накала высокая плотность тока автоэмиссии устойчивость к колебаниям температуры малая чувствительность к внешней радиации без-инерционность экспоненциально высокая крутизна вольт-амперных характеристик. Совокупность этих свойств обусловливает перспективность использования автокатодов в различных электронных приборах, таких, как электронно-лучевые приборы, плоские дисплейные экраны и т. д.  [c.5]

В методах с мсханич. сканированием часто используется синхронное перемещение прнёмника звука и точечного источника света (лампочки или луча электронно-лучевой трубки), яркость к-рого управляется электрич. сигналом, полученным от приёмника звука. Регистрация распределения яркости осуш сствляется обычно на фотопластинке, к-рая после экспо-зиции и хим. обработки и является эквивалентной оптич. амплитудной голограммой.  [c.513]

Схема фазового флуорометра I — источник возбуждения 2—модулятор J—полупрозрачная пластинка 4 — флуоресцирующий образец 5, 6—ФЭУ 7—прибор, измеряющий ф S—фазовый детектор (или электронно-лучевая трубка).  [c.329]

Плавку в электронно-лучевых печах (ЭЛП) применяют для получения чистых и ультрачистых тугоплавких металлов (молибдена, ниобия, циркония и др.), для выплавки специальных сплавов и сталей. Источником теплоты в этих печах является энергия, выделяющаяся при торможении свободных электронов, пучок которых направлен на металл. Получение электронов, их разгон, концентрация в луч, направление луча в зону плавления осуществляются электронной пушкой. Металл плавится и затвердевает в водоохлаждаемых кристаллизаторах при остаточном давлении 1,33 Па. Вакуум внутри печи, большой перефев и высокие скорости охлаждения слитка способствуют удалению газов и примесей, получению металла  [c.52]


В результате расплавления металлических деталей по примыкающим поверхностям под действием мощного лазерного излучения и последующей кристаллизации этого расплава образуется сварное соединение, основанное на межатомном взаимодействии. Тйким образом, лазерная сварка, как и дуговая, плазменная и электронно-лучевая, относится к методам сварки плавлением высококонцентриро-ванными источниками энергии.  [c.245]

Основной узел установки для ЭЛС - это электронно-лучевая пушка с системами электропитания и управления, формирующая электронный луч (рис. 130). Источником электронов в пушке является катод 1, изготавливаемый из металлов с малым значением работы выхода электронов, допускающих нагрев до высокой температуры при сравнительно низкой скорости испарения. Наиболее полно этим требованиям отвечают вольфрам и тантал. В некоторых конструкциях сварочных пушек применяют катоды косвенного нагрева, изготовленные из лантаноборид-ных соединений (например, LaBg), нагреваемые специальным источником тепла. Они обладают лучшими эмиссионными характеристиками по сравнению с металлическими катодами.  [c.251]


Смотреть страницы где упоминается термин Электронно-лучевые источники : [c.197]    [c.22]    [c.205]    [c.112]    [c.83]    [c.157]    [c.121]    [c.157]    [c.128]    [c.87]    [c.100]    [c.23]    [c.542]    [c.469]    [c.518]    [c.252]    [c.513]   
Смотреть главы в:

Теория сварочных процессов  -> Электронно-лучевые источники



ПОИСК



Источник при электронно-лучевой сварке

Источники питания для аргонодуговой, плазменной и электронно-лучевой сварки

Источники питания для сварки электронно-лучевой

Источники электронный луч

Электроны источники



© 2025 Mash-xxl.info Реклама на сайте