Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Контакт с другими металлами

Точки пересечения анодной и катодной кривых для каждого металла (точки 1, 2 я 3) соответствуют величине его коррозионного тока (тока саморастворения) и стационарного потенциала при отсутствии контакта с другими металлами (см. с. 271).  [c.288]

Влияние контакта с другими металлами в короткозамкнутой многоэлектродной системе на коррозионное поведение каждого металла можно установить, сопоставляя коррозионные характеристики данного металла при отсутствии контакта с другими металлами с его характеристиками при работе в контакте с другими металлами.  [c.290]


Разностный и защитный эффекты наблюдаются при соответствующей поляризации металла или сплава независимо от способа ее осуществления (контакта с другим металлом или поляризации от внешнего источника постоянного тока).  [c.295]

КОНТАКТ С ДРУГИМИ МЕТАЛЛАМИ  [c.357]

Рис. 254. Влияние контактов с другими металлами на коррозию дюралюминия в морской воде Рис. 254. Влияние контактов с другими металлами на коррозию дюралюминия в морской воде
Для изучения контактной коррозии, т. е. коррозии металлов и сплавов в контакте с другими металлами, применяют различные виды образцов и методы контактирования. Используют, например,  [c.454]

Контакт с другими металлами  [c.42]

Мартенситные нержавеющие и дисперсионно-твердеющие стали, термообработанные с целью получения предела текучести- олее 1,24 МПа, самопроизвольно растрескиваются в атмосфере, солевом тумане или при погружении в водные среды, даже если они не находятся в контакте с другими металлами [55—58]. Лопасти воздушного компрессора из мартенситной нержавеющей стали [59 ] разрушались вдоль передней кромки, где были велики остаточные напряжения и конденсировалась влага. Для сверхпрочных мартенситных нержавеющих сталей с 12 % Сг, которые находились в морской атмосфере под напряжением, составляющим 75 % от предела текучести, срок службы не превышал 10 дней [60]. Приведенные данные получили разнообразные объяснения, однако они убедительно доказывают, что сталь в указанных случаях разрушается в результате или водородного растрескивания, или КРН. При наличии в стали высоких напряжений, она может растрескиваться в воде без внедрения водорода, который образуется при взаимодействии воды с металлом. По-видимому, в этом случае вода непосредственно адсорбируется на поверхности и уменьшает прочность металлических связей в степени, достаточной для зарождения трещин (адсорбционное растрескивание под напряжением).  [c.320]

КОРРОЗИЯ нержавеющих СТАЛЕЙ ПРИ КОНТАКТЕ с ДРУГИМИ МЕТАЛЛАМИ И стойкость к ОБЩЕЙ КОРРОЗИИ  [c.325]

ПОВЕДЕНИЕ В КОНТАКТЕ С ДРУГИМИ МЕТАЛЛАМИ  [c.351]

Коррозией магния и его сплавов при контакте с другими металлами. Алюминиевые сплавы, содержащие магний (например, марки 5050, 5052 и 5056), менее подвержены действию щелочей, которые образуются при работе пары магний—алюминий, и поэтому их можно применять в контакте с магнием. Применим также чистый алюминий. Однако в большинстве случаев магний следует изолировать от других металлов. Например, под головки болтов и винтов нужно помещать непроводящие прокладки большего размера. Благодаря этому увеличивается сопротивление электролита и уменьшается контактная коррозия.  [c.355]


В новом Справочнике Британского института стандартов по коррозии контактирующих металлов содержатся подробные сведения в виде кода (О — нет добавочной коррозии 1 — незначительная добавочная коррозия 2—умеренно высокая добавочная коррозия 3 — очень высокая добавочная коррозия) об изменениях, происходящих с рассматриваемым металлом при контакте с другими металлами в атмосфере или при погружении в природные источники воды. Однако в справочник не включены данные о поведении пар в химических растворах или пищевых продуктах. Для этих условий необходимо проводить соответствующие испытания на коррозию.  [c.38]

В отношении коррозии деформируемых алюминиевых сплавов в контакте с другими металлами и сплавами необходимо иметь в виду следующее. Контакт  [c.73]

Чистый кобальт имеет малую коррозионную стойкость в воде критических параметров. Однако ряд его сплавов достаточно устойчив в деаэрированной воде при температурах до 350° С, например, сплав с концентрацией 35—55% кобальта, 11—33% хрома, 5—16% вольфрама и с небольшим количеством кремния, марганца, никеля и железа. Контакт с другими металлами на скорость коррозии сплавов кобальта влияет слабо. Состояние поверхности практически на нее не влияет. Сплавы с низким содержанием кобальта устойчивы в воде лишь до температуры 120° С [111,244]. При температуре 260° С стеллиты достаточно устойчивы в деаэрированной воде. В потоке воды скорость коррозии несколько возрастает и поверхность стеллитов покрывается пленкой серо-коричневого цвета. С ростом концентрации кислорода до 0,2—0,6 мг/л скорость коррозии стеллита возрастает в 4—10 раз.  [c.227]

Золото и платина имеют высокую коррозионную стойкость в дистиллированной воде при температуре 350° С. Сплавы золота и платины также имеют в этой среде высокую коррозионную стойкость. Сохраняется она у золота и в воде, насыщенной воздухом при температуре 316° С. Контакт с другими металлами на коррозионное поведение золота и платины не влияет. Но контакт с ними может пагубно отразиться на стойкости сопряженных конструкционных материалов.  [c.231]

Высокое сопротивление титана коррозии — одно из его наиболее ценных свойств, связано с образованием на его поверхности тонкой, плотной и прочной окисной пленки, которая изолирует металл от агрессивной среды и препятствует его разрушению. Положительными свойствами тнтана являются также хорошая сопротивляемость коррозионной усталости и коррозионная стойкость в контакте с другими металлами.  [c.304]

Коррозией называется химическое разрушение сплавов под действием газов, паров или жидкостей. При высоких температурах, как правило, коррози я протекает более интенсивно. Многие металлы, сами по себе хорошо сопротивляющиеся коррозии, очень быстро корродируют при контакте с другими металлами. Коррозия значительно быстрее развивается в напряженных местах ржавление согнутого сталь-  [c.23]

Магниевые сплавы. Основное преимущество магниевых сплавов по сравнению с остальными промышленными металлами — небольшая плотность (1700... 1800 кг/м ). Все магниевые сплавы имеют сравнительно высокую прочность (а = 200...400 МПа, 5 = 6...20%), хорошо поглощают вибрации. Однако из-за пониженного (4,3 10" МПа) модуля упругости пригодны лишь для мало нагруженных деталей. Магниевые сплавы обладают низкой коррозионной стойкостью, особенно в контакте с другими металлами. Недостатком также являются трудности литья и обработки давлением. Магниевые сплавы удовлетворительно свариваются дуговой сваркой в защитной среде инертных газов и хорошо обрабатываются резанием.  [c.219]

Титан и его сплавы в нейтральных водных растворах хлоридов являются катодом по отношению к большинству конструкционных материалов коррозионностойким сталям, медноникелевым сплавам, алюминию и его сплавам. В этом случае контакт с другим металлом не приводит к сколь-нибудь заметной коррозии титана и его сплавов, но, как правило, является опасным для контактирующего металла.  [c.193]

Контакт с другими металлами При контакте двух разнородных металлов в коррозионной среде разрушению подвергается металл, являющийся анодом по отношению к другому металлу (рис.25).  [c.51]


Влияние контакта с другими металлами на скорость коррозии цинка в 3%-ном растворе серной кислоты  [c.80]

На практике часто встречаются случаи, когда коррозия какой-либо конструкции, погруженной в раствор электролита, значительно ускоряется вследствие соприкосновения различных металлов или сплавов, из которых эта конструкция изготовлена. Для тех металлов, которые поляризуются анодно в возникшем гальваническом элементе, контакт с другими металлами ведет к интенсивной коррозии. Части конструкции, поляризующиеся катодно, защищаются от коррозии током, проходящим через них в катодном направлении.  [c.81]

Сталь, находящаяся в контакте с другими металлами, также хорошо защищается от коррозии гексаметафосфатом, при условии усиленного подвода ингибитора к поверхности металла 25—  [c.263]

Металлическая конструкция может корродировать по-разному в зависимости от особенностей металла, среды и условий работы, например от переменной температуры, насыщенности кислородом, вибрации, контакта с другими металлами. Ца поверхности конструкции появляются язвы, трещины или равномерный слой продуктов коррозии. Возникающая коррозия ухудшает эксплуатационные качества конструкции.  [c.13]

В табл. 3 исследуемый основной металл помещен в первой графе, а сопрягаемый с ним металл — во второй в последующих графах приведены цифровые показатели скорости коррозии исследуемого металла (в контакте с другим металлом) в растворах различных солей.  [c.339]

Теория многоэлектродных систем, разработанная Г. В. Акимовым и его учениками, позволяет решать подобные задачи. Проблема многоэлектродных систем была впервые сформулирована Г. В. Акимовым в 1928 г. при изучении коррозии алюминиевых сплавов в контакте с другими металлами. На протяжении всей своей жизни он неустанно трудился над решением этой задачи и добился поразительных успехов.  [c.69]

Коррозионные потери анода рассчитывали по количеству протекшего электричества. Буква А означает, что данный металл в контакте с другими металлами работает в качестве анода и подвергается разрушению, буква К — что он служит катодом (цифры по горизонтали — порядковые номера металлов, составляющих пару). В ряде случаев полярность электродов во времени менялась.  [c.116]

ТАБЛИЦА 2 0. ГЛУБИНА КОРРОЗИОННЫХ ПОРАЖЕНИЙ НА ОБРАЗЦАХ МАГНИЕВОГО СПЛАВА МЛ5, НАХОДИВШИХСЯ в КОНТАКТЕ С ДРУГИМИ МЕТАЛЛАМИ в ПРОМЫШЛЕННОЙ АТМОСФЕРЕ В ТЕЧЕНИЕ 6 МЕС.  [c.126]

Алюминиевые сплавы, находящиеся в контакте с другими металлами, как было показано выше, являются часто анодами и подвергаются разрушению. Степень усиления коррозии зависит при этом от характера атмосферы. Электрохимическое действие контактов проявляется сильнее в морской и прибрежной атмосферах, нежели в промышленной и сельской Так, например, в сельских и промышленных районах контакт алюминиевых сплавов, содержащих медь, с обычной сталью не приводит к сильной коррозии алюминиевых сплавов. Однако в приморском районе коррозия может заметно усилиться [48, 49].  [c.132]

Если условия контактной коррозии металлов таковы, что суммарная анодная кривая пересекается с суммарной катодной кривой ( к)обр кс в области значительной зависимости последней от перенапряжения катодного процесса (перенапряжения ионизации кислорода), например в точке 1, то нетрудно заметить, что величина суммарного коррозионного тока Г (который полностью или большая часть его приходится на основной металл) определяется ходом суммарных катодной (в основном) и анодной кривых. Суммарные же величины отличаются от кривых основного (анодного) металла на величину соответствующих токов металла катодного контакта, которые определяются ходом катодной (в основном) и анодной кривых этого металла. Ход катодной кривой металла катодного контакта определяется катодной поляризуемостью его катодных участков Рк, и величиной поверхности этих участков Skj, а ход анодной кривой этого металла — его обратимым электродным потенциалом в данных условиях (V a.)oep. анодной поляризуемостью его анодных участков Ра, и величиной поверхности этих участков Чем положительнее значения (УмеХбр> тем меньше его анодные функции при контакте с другим металлом и больше катодные функции. Таким образом, эффективность ускоряющего действия металла катодного контакта на коррозию основного металла зависит от природы металла катодного контакта [его обратимого электродного потенциала в данных условиях (Каг)обр. поляризуемости электродных процессов Ркг и Рзг и соотношения 5к. Sa J и его поверхности 5а. При этом в условиях преимущественного катодного контроля процесса коррозии главную роль будут играть (Ка обр. Skj и Рк2-  [c.360]

В контакте с другим металлом олово обычно служит анодом по отношению к меди и железу, а к цинку и алюминию — като дом. Однако точное соотношение электродных потенциалов мо жет немного изменяться в зависимости от параметров коррози онной среды. Стойкость олова в щелочах слабая из-за раство рения окисной пленки, но действие кислот происходит медленно особенно при отсутствии достаточного количества кислорода Стойкость олова в органических кислотах особенно высокая  [c.121]

Особенно сильно ускоряется коррозия металлов вследствие их контакта с другими металлами, имеющими более положительные значения электродных потенциалов, поскольку здесь уже возникает типичная коррозионная макрогальванопара и катодный процесс переходит на более благородный металл. Так, например, ряд аварий морских судов обусловлен коррозионно-механическим разрушением систем рулевого управления (стального пера руля и его деталей) вследствие того, что вблизи руля в кормовой части судна находится латунный гребной винт и возникает коррозионная гальванопара руль-винт, стимулирующая коррозию рулевого устройства. Характерным примером является также активное коррозионное разрушение зубных коронок из нержавеющей стали, если рядом находятся золотые коронки.  [c.32]

Силикаты предотвращают коррозию стали и тогда, когда она находится в контакте с другими металлами. В растворах силикатов находятся отрицательно заряженные ионы и коллоидные частицы. Взаимодействуя с ионами железа, они осаждаются на поверхности защищаемой стали в виде ферросиликатов, затрудняя тем самым анодный процесс. Процесс осаждения идет до тех пор, пока не образуется сплошная защитная пленка.  [c.92]


Все данные, представленные в табл. 162, получспы в сравнительно чистой, медленно движущейся прибрежной морской воде, подходящей для роста как макро-, так и микроорганизмов. В загрязненнш или разбавленной морской воде, в арктических водах, в условиях быстрого потока и в других случаях, когда кислород присутствует, а обрастание невозможно, скорости коррозии могут быть выше. Кроме того, приведенные результаты относятся к травленык образцам без поверхностной окалины с определенным отношением площадей боковых и лицевых сторон (0,056) и не имевшим контакта с другими металлами. Более высокое отношение площади боковых и лицевых сторон может увеличить средние коррозионные потери. Гальванические эффекты, вызванные большой площадью окалины, контактом с другим металлом или изменением свойств электролита, могут нарушать биологический контроль и усиливать питтннг. Всякие другие отклонения от нормальных условий также могут влиять на механизм корразии.  [c.452]

Титан имеет высокую коррозионную стойкость в воде при температуре 318° С, Скорость коррозии его в этих условиях 0,01 г1мР сут. Совершенно устойчив титан и в водяном паре при температуре 400° С. Контакт с другими металлами на скорость его коррозии не влияет. Коррозия титана равномерная. Местной или межкристал-литной коррозии не наблюдается. Различие в коррозионной стойкости отожженного и холоднокатаного титана незначительно. Присутствие в воде ионов хлора на скорость коррозии титана почти практически не влияет. При температуре 260° С титан стоек в воде, насыщенной воздухом.  [c.231]

В замкнутых системах в зависимости от агрессивности среды концентрация силиката должна быть повышена в 4—5 раз. Обработка воды силикатами приостанавливает и коррозию стали, когда она находится в контакте с другими металлами. Силикаты дают определенный эффект при защите биметаллической системы из алюминия и меди применение силикатов совместно с хроматами улучшает эту защиту. Оптимальной концентрацией считается 40 мг/л Na2Si03 и 500 мг/л Ыэ2Сг204. Добавки в электролит только силиката не прекращают коррозию. Добавки хромата в количестве 1000 мг/л также малоэффективны. Детали, покрытые оловом, судя по электрохимическим измерениям, должны также хорошо защищаться от коррозии силикатами [46].  [c.260]

Английские исследователи [171] много внимания уделяли изучению композиции ингибиторов из бензоата и нитрита натрия для охлаждающей воды. Они установили, что в условиях прерывистого нагрева смесь, содержащая 1,5% бензоата натрия и 0,1% нитрита натрия, защищает в преемлемых для практики пределах следующие металлы малоуглеродистую сталь, чугун, припой, медь, латунь и литейный алЮхУиниевый сплав RR-50 (типа силумина). При этом полностью защищаются припой и сталь. Остальные металлы корродируют слабо. Сообщается, что эта же смесь ингибиторов защищает полностью от коррозии чугун вне контакта с другими металлами при температуре 60—80 °С. Из других ингибиторов, которые обеспечивают полную защиту всех металлов охладительной системы, включая цветные металлы, упоминается смесь, состоящая из 1,5% хромата натрия и 2,5% двухзамещенного фосфата натрия или 10—20%-ный раствор бензоата натрия. По мнению авторов, нитрит натрия, хорошо защищающий черные сплавы, вызывает коррозию припоя. Однако в присутствии достаточных концентраций бензоата атрия это вредное влияние нитрита натрия на припой подавляется.  [c.274]

Испытания различных ингибиторов для систем водяного охлаждения радиаторов автомобилей провел также Роу [175]. Он установил, что нитрит натрия является хорошим ингибитором для стали и чугуна, но усиливает коррозию припоя. Бораты и бензоаты особенно полезны при наличии хлоридов и сульфатов. Бихромат — отличный ингибитор для всех металлов в случае охлаждения системы водой, но неприемлем для систем, охлаждающихся этилен-гликолем. Меркаптобензтиазол — отличный ингибитор для латуни и меди. Растворимое масло хорошо защищает многие металлы за исключением алюминия, находящегося в контакте с другими металлами. Смесь растворимого масла меркаптобензтиазола и нитрита натрия в течение определенного времени хорошо защищала от коррозии модель охладительной системы.  [c.277]

Повышение коррозионной стойкости при контакте с другим металлом может быть достигнуто в растворах серной кислоты также и для титана. В качестве катодного протектора использовали платину, графит, нержавеющую сталь 18%Сг—8% Ni, хастел-лой [135], которые в этих средах имеют потенциалы, более положительные, чем потенциал пассивации титана. При достаточной величине катодной площади все названные металлы могут пасси-  [c.154]

По таблице можно проследить и влияние обработки поверхности. Так, например, коррозионные потери анодированного сплава Д16, наполненного в хромпике, при контакте с латунью ниже скорости коррозии того же сплава, пленка которого наполнена в горячей воде. Коррозия азотированной стали 38ХМЮА при контакте с другими металлами в два раза меньше коррозии стали в состоянии поставки.  [c.116]

Сталь 38МХЮА в состоянии поставки, находясь в контакте с другими металлами, является по отношению ко всем сплавам анодом, за, исключением сплавов АМц, Д16 и МЛ1. Азотирование не меняет полярности, однако заметно снижает ток.  [c.117]


Смотреть страницы где упоминается термин Контакт с другими металлами : [c.455]    [c.71]    [c.6]    [c.58]    [c.121]    [c.83]    [c.361]   
Смотреть главы в:

Курс теории коррозии и защиты металлов  -> Контакт с другими металлами



ПОИСК



Влияние контакта с другими металлами на скорость коррозии цинка в 3-ном растворе серной кислоты

Контакты

Коррозия нержавеющих сталей при контакте с другими металлами и стойкость к общей коррозии

Магний контакты с другими металлам

Поведение в контакте с другими металлами

Трубопроводы контакт с другими металлами



© 2025 Mash-xxl.info Реклама на сайте