Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Динамика Кинематика

И В СВЯЗИ с полетом снарядов (динамика), кинематика выделилась в самостоятельный раздел теоретической механики довольно поздно, в начале XIX века.  [c.294]

Несмотря на разницу в функциональном назначении механизмов отдельных видов, в их строении, кинематике и динамике много общего.  [c.17]

НИЯ этих ошибок на кинематику и динамику н -лона коромысла от  [c.569]

Кинематика и динамика цепной передачи  [c.248]

Визуальная модель геометрического образа изделия (ГОИ)—это графический образ пространственной структуры изделия на экране дисплея. Изобразительные и графические характеристики подобной модели намного превышают возможности ручного графического изображения за счет введения в пространство модели фактора времени. По своим динамическим возможностям машинная визуализация ГОИ максимально приближается к натурной модели. Конструктор на самом раннем этапе разработки формы получает возможность увидеть структуру будущего изделия в полном соответствии с кинематикой и динамикой всех входящих в нее элементов. Увязку кинематически связанных звеньев конструкции можно осуществлять на движущейся модели-изображении в любом масштабе времени. При разработке изделий сложной объемно-пространственной структуры для уточнения кинематических взаимосвязей компонентов приходилось осуществлять построение экспериментальных натурных моделей. В процессе испытаний на таких моделях уточнялся и окончательно отрабатывался мысленный образ конструкции (рис. 1.1.2,а). Преимущества визуальной модели перед статическими графическими моделями выступают особо ярко в сложных элементах конструкций, каковыми являются средства механизации летательных аппаратов.  [c.17]


Вероятностные задачи кинематики и динамики  [c.445]

Теория механизмов представляет собой науку, в которой изучают структуру, кинематику и динамику механизмов, независимо от их конкретного применения.  [c.9]

Кинематическая схема — условное изображение механизма, используемое для изучения общих законов кинематики и динамики. Она не отражает действительного конструктивного устройства механизма.  [c.58]

Знание кинематики подшипников важно для изучения их динамики (силовых воздействий на тела качания), для расчета на долговечность (определение числа циклов нагружений) и, наконец, для изучения работы сепаратора.  [c.349]

По характеру рассматриваемых задач механику принято разделять на с тати к у, кинематику и динамику. В статике излагается учение о силах и об условиях равновесия материальных тел под действием сил. В кинематике рассматриваются общие  [c.6]

Кинематика представляет собой, с одной стороны, введение в динамику, так как установление основных кинематических понятий и зависимостей необходимо для изучения движения тел с учетом действия сил. С другой стороны, методы кинематики имеют и самостоятельное практическое значение, например, при изучении передач движения в механизмах.  [c.95]

Движение тел с чисто геометрической точки зрения рассматривалось в кинематике. В динамике, в отличие от кинематики, при изучении движения тел принимают во внимание как действующие на них силы, так и инертность самих материальных тел.  [c.180]

Выдающийся математик и механик Л. Эйлер (1707—1783), швейцарец по происхождению, тридцать лет жил и работал в России, профессор, а затем действительный член Петербургской Академии наук, автор 850 научных трудов, решил ряд задач по кинематике и динамике твердого тела, исследовал колебания и устойчивость упругих тел, занимался и вопросами практической механики, исследовал, в частности, различные профили зубьев зубчатых колес и пришел к выводу о том, что наиболее перспективный профиль — эвольвентный.  [c.5]

Существенный вклад в становление механики машин как цельной теории машиностроения внес И. И. Артоболевский (1905— 1977). Он является организатором советской школы теории механизмов и машин им написаны многочисленные труды по структуре, кинематике и синтезу механизмов, динамике машин и теории машин-автоматов, а также учебники, получившие всеобщее признание.  [c.7]

Теория машин и механизмов в настоящем ее виде является комплексной наукой, в которой проблемы структуры, кинематики и динамики машин, их анализа и синтеза тесно переплетаются с проблемами оптимального проектирования и управления.  [c.10]


В сборнике помещены три задания (по статике, кинематике и динамике), при выполнении которых целесообразно использование ЭВМ. По каждому из этих заданий дан пример с алгоритмом решения и результатами расчета на ЭВМ.  [c.3]

Для выполнения заданий по статике и кинематике необходимо решать системы линейных алгебраических уравнений, а при выполнении задания по динамике — численно интегрировать дифференциальное уравнение. В биб-  [c.3]

Изучением самой простой формы движения материального мира, изучением перемещения тел относительно друг друга и во взаимодействии друг с другом и занимается теоретическая механика. Перемещение тела относительно другого тела или, иначе говоря, изменение положения одного тела по отношению к другому называется механическим движением. Обычно теоретическая механика разделяется на три части статику, кинематику и динамику. Статика — раздел теоретической механики, занимающийся изучением сил и условий их равновесия. Кинематика занимается изучением механического движения без учета действия сил. Динамика изучает законы механического движения в отношении их причин и следствий.  [c.5]

Заключительный раздел теоретической механики — динамика — изучает движение материальных тел под действием сил. Узнав из кинематики, как могут двигаться материальные точки и твердые тела и как может с течением времени изменяться характер их движения, при изучении динамики узнаем, почему материальные точки (тела) движутся именно так, а не иначе и какие причины приводят к изменению их движения.  [c.123]

Курс механики состоит из трех разделов — статики, кинематики и динамики.  [c.9]

Возникшая в результате практической деятельности теоретическая механика развивается в неразрывной связи с техникой. За несколько столетий до нашей эры возникновение статики было вызвано расцветом строительства. Затем новый толчок дало развитие мореплавания, промышленности, военного дела и астрономии — в результате в XV — ХУП веках возникли кинематика и динамика.  [c.9]

В статике изучались задачи о приведении систем сил к простейшему виду и относительном равновесии материальных тел, в кинематике рассматривались задачи о геометрических характеристиках механического движения. В динамике — главном разделе курса — на основе сведений из статики и кинематики и специальных законов динамики решаются задачи о связи сил и движений.  [c.9]

В то время как в кинематике за полюс можно принять любую точку плоской фигуры, в динамике за полюс следует брать только центр инерции С. Иной выбор полюса приводит к усложнению уравнений.  [c.252]

КИНЕМАТИКА, СТАТИКА, ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ  [c.1]

Учебник для механико-математических и физико-математических факультетов университетов. Может быть использована также в педагогических институтах. Первая часть посвящена кинематике материальной точки и абсолютно твердого тела, статике материальной точки и системы материальных точек и динамике материальной точки.  [c.2]

Предлагаемая книга представляет собой первую часть курса и содержит кинематику, статику и динамику точки вторая часть курса, издание которой предполагается в скором времени, будет содержать динамику системы, динамику твердого тела и аналитическую механику.  [c.5]

Системы основных единиц. Для измерения всех механических величин достаточно ввести три основные единицы измерения. Двумя из них принято считать единицы длины и времени, уже введенные в кинематике. В качестве третьей (кинетической) единицы удобнее всего выбрать единицу измерения массы или силы. Но так как сила и масса связаны между собой основным уравнением динамики  [c.173]

Сборник содержит 386 типовых задач по теории ме ханизмов и машин и соответствует программе, утвержденной Министерством высшего и специального среднего образования СССР. В сборник включены задачи по теории структуры меканнзмов, кинематике, кинетостатике и динамике механизмов с высшими и низшими парами  [c.2]

Поэтому можно к исследованию механизмов с различными функциональными назначениями применять общие методы, базирующиеся на основных принципах современной механики. В механике обычно рассматриваются статика, кинематика и динамика как абсолютно твердых, так и упругих тел. При исследовании машин и механизмов, как правило, мы можем считать жесткие тела, образующие механизм, абсолютно твердыми, так как перемещения, возникающие от упругих деформаций тел, малы по от Ю-[[leHHfO к перемещениям самих тел и их точек. Если мы рассматриваем механизмы как устройства, в состав которых входят только твердые тела, то для исследования кинематики и динамики механизмов можно пользоваться методами, излагаемыми в теоретической механике. Если же требуется изучить кинематику и динамику механизмов с учетом упругости звеньев, то Для этого, кроме методов теоретической механ.чки, мы должны еще применять методы, излагаемые в сопротивлении материалов, теории упругости и теории колебании. Если в состав механизма входят жидкие или газообразные тела, то необходимо привлекать к исследованию кинематики и динамики механизмов гидромеханику и аэромеханику.  [c.17]


Возможность раздельного рассмотрения перманентного и начального движений механизма имеет важное значение при исследовании кинематики и динамики механизмов. Оно позволяет при кинематическом исследовании определять положения, скорости и ускорения звеньев в функции обобщенной координаты механизма, а не в функции времени. Истинный закон изменения обобщенной координаты от времени зависит от сил, действующих и возникаюн],их в механизме, и может быть определен только после динамического исследования механизма. Определив в результате этого исследования закон изменения обобщенной координаты, например угла поворота ср начального звена от времени t, т. е. ф = <р (О, мы определим угловую скорость этого звена оз =  [c.73]

Возможно, что выражение (9-45) окажется более удобным для обобщения опытных данных по динамике сыпучей среды, а (9-46)—по кинематике слоя. В более общем случае —продувке слоя и пр. —в Кп.сл следует подставлять равнодействующие сил инерции и касательных напряжений. Для моделирования потоков сыпучей среды согласно известной обратной теореме теория подобия необходимо и достаточно, чтобы условия однозначности были подобны, а одноименные критерии — аргументы, составленные из этих условий, в правой части (9-45) были равны. При нестационарном и нестабильном движении слоя дополнительно требуется, чтобы Носл = = idem и L/D= idem. Указанные определения являются более полными, чем полученные в [Л. 68].  [c.291]

Построение нормалей поверхностей является распространенной инженер- Юи задачей. Расчет на прочность всевозможных поверхностей резервуаров, архитектурно-строительных оболочек и Г.Д. разработка управляющих программ сверления, фрезерования торцо-В1ЯМИ фрезами технических поверхностей расчет кинематики и динамики движения тел по направляющим поверхностям и многие другие задачи требуют построения нормалей поверхностей.  [c.151]

К недостаткам нодшипииков качения следует отнести отсутствие разъемных конструкций, сравнительно большие радиальные 1 )бариты, ограниченную быстроходность, связанную с кинематикой и динамикой юл качения (центробежные силы, гироскопические моменты и пр.), низкую работоспособность при вибрационных и ударных нагрузках и при работе в агрессивных средах (например, в воде).  [c.285]

Зубчатые и червячные передачи. Некоторые вопросы кинематики, динамики расчета и пронзводства/Под ред. Н. И. Колчииа — Л. Машиностроение, 1974.  [c.207]

В тридцать втором издании сделана попытка, не выходя за рамки теоретической механики, отразить в какой-то степени новые проблемы техники и более полно охватить те вопросы классической механики, которые не нашли до сих пор достаточного освещения. В связи с этим в Сборник введены новые разделы, содержащие задачи по пространственной ориентации, динамике космического полета, нелинейным колебаниям, геометрии масс, аналитической механике. Одновременно существенно дополнены новыми задачами разделы кинематики точки, кинематики относительного дзихсения и плоского движения твердого тела, динамики материальной точки и системы, динамики точки и системы переменной массы, устойчивости движения. Небольшое количество новых задач введено также почти во все другие разделы Сборника некоторые задачи исключены из него. Сделаны также небольшие перестановки в размещении материала. В конце Сборника в качестве добавления приведена Международная система единиц (СИ).  [c.8]

В аналитической механике даны уравнения Гамильтона. Основы кинематики нJюшнoй среды содержатся в разделе Кинематика (гл. 7) введение в динамику сплошной среды — в разделе Динамика (rjr 12). Они излюжены без использования операций тензорного исчисле1шя.  [c.3]

Основная переработка курса была осуществлена при подготовке четвертого издания. Для пятого издания заново написаны главы о цен Iре тяжести в статике сложении движений гвердою чела в кинематике параграфы о скорости и ускорении в криволинейных координатах, а чакже скорости и ускорения в сферических координагах, уравнениях Гамильгона и задаче Ньютона. Часть примеров в статике, кинематике и динамике заменена новыми.  [c.4]

Теоретическая механика делится на три части статику, кинематику и динамику. Статика — раздел теоретической механики, в котором рассматривают свойслва сил, приложенных к точкам твердого гела, и условия их равновесия. В кинематике изучают чисто геометрические формы механических движений материальных объектов без учега условий и причин, вызывающих и изменяющих эти движения. В динамике изучаются механические движения материальных объектов в зависимости от сил, г. е. от действия на рассматриваемые объекты других материальных объекюв.  [c.7]

Следует отметить труды ученых одной из старейших кафедр нашей страны — кафедры теории механизмов и машин МВТУ им. Н. Э. Баумана, где курс прикладной механики создал и начал впервые в 1872 г. читать Ф. Е. Орлов (1843—1892). В дальнейшем курс отрабатывался и углублялся как в методическом, так и теоретическом направлении Д. С. Зернов (1860—1922) расширил теорию передач Н. И. Мерцалов (1866—1948) дополнил кинематическое исследование плоских механизмов теорией пространственных механизмов и разработал простой и надежный метод расчета маховика Л. П. Смирнов (1877—1954) привел в строгую единую систему графические методы исследования кинематики механизмов и динамики машин В. А. Гавриленко (1899—1977) разработал теорию эвольвентных зубчатых передач Л. Н. Решетов развил теорию кулачковых механизмов и положил начало теории самоустанавли-вающихся механизмов.  [c.8]


Четвертое издание настоящего сборника содержит 45 задаш1Й, каждое в 30 вариантах, по всем основным темам программ, утвержденных Минвузом СССР 9 - по статике, 9 - кинематике, 13 - динамике, 9-аналитической механике и 5 — колебаниям механической системы,  [c.3]

В кинематике изучаются законы движения материальных зо-чек и твердых тел чисто с геометрической стороны. Законом движения точки или тела можно назвать такую совокупность математических образов и уравнений, которая в любой момент времени позволяет установизь, где находится точка или тело, куда и как они движутся. При этом в кинематике не рассматриваются вопросы, почему точка или тело движезся именно так, а не иначе. Эти вопросы изучаются в разделе Динамика .  [c.199]

Предлагаемый задачник снабжен лишь правильными ответами и содержит 817 задач (из старого сборника взято всего 67, принадлежащих авторам этого сборника, а остальные задачи составлены заново по всем разделам курса, в том числе по статике— 176, кинематике — 221, динамике — 420). Характерная особенность большинства задаршй — несложность математических выкладок, что позволяет использовать задачник для быстрого контроля текущей успеваемости в любой форме, как машинной, так и безмашинной.  [c.3]


Смотреть страницы где упоминается термин Динамика Кинематика : [c.168]    [c.332]    [c.7]    [c.2]    [c.50]    [c.2]    [c.8]   
Справочник машиностроителя Том 1 Изд.2 (1956) -- [ c.0 ]



ПОИСК



389, 390, 391, 407, 408, 411 —Динамика 403 — Кинематика 385 — Колебание гармоническое

389, 390, 391, 407, 408, 411 —Динамика 403 — Кинематика 385 — Колебание гармоническое удара

393 — Центры тяжести твердые — Вращение 396 — Движение 379, 381, 398, 401 — Динамика 396 — Кинематика

Вероятностные задачи кинематики и динамики

Глава 34 Кинематика и динамика кривошинно-шатунного механизма

ДИНАМИКА ДИЗЕЛЕ И (Я. А. Истомин) Кинематика механизмов двигателей

ДИНАМИКА НЕВЯЗКОЙ ЖИДКОСТИ Основные положения кинематики и динамики жидкости

Динамика Кинематика Колебание твердые вращающиеся — Действие

Динамика Кинематика цилиндрические — Моменты инерции единичные

Динамика свободной частицы Кинематика

Динамика твердого тела Тензор инерции. Кинематика

Единицы пространства. Единицы величин кинематики . Единицы величин динамики

Занятие 26. Кинематика жидкости. Динамика идеальной жидкости

КИНЕМАТИКА И ДИНАМИКА ДВИГАТЕЛЯ

Кинематика

Кинематика жидкостей. Динамика жидкостей, лишенных трения

Кинематика и динамика Ответы и Задачи решения Движение точки

Кинематика и динамика аксиально-поршневых насосов

Кинематика и динамика движения жидкости

Кинематика и динамика жидкости

Кинематика и динамика карданной передачи

Кинематика и динамика качеТрение

Кинематика и динамика кривошипно-шатунного механизма

Кинематика и динамика насосов

Кинематика и динамика подшипников

Кинематика и динамика цепной передачи

Кинематика н динамика вибрационных (инерционных) грохотов

Клиноременные Динамика и кинематика

Насосы кинематика и динамика поршневого насоса аксиального типа

Насосы кинематика и динамика поршневых насосов радиального тип

ОТДЕЛ ПЕРВЫЙ СТАТИКА ТВЕРДОГО ТЕЛА Статика, кинематика, динамика

Основные законы кинематики и динамики жидкости

Основные понятия кинематики и динамики жидкости

Основные уравнения кинематики и динамики невязкой жидкости

Основы кинематики и динамики жидкости

Основы кинематики и динамики жидкости и газа

Параметры кинематики и динамики, уравновешенность двигателей и моменты инерции

Последование кинематики и динамики движения поршневых групп

Предмет теоретической механики. Основные модели материальных Разделение механики на статику, кинематику и динамику

РАЗДЕЛ ТРЕТИЯ ЭЛЕМЕНТЫ КИНЕМАТИКИ И ДИНАМИКИ Кинематика

РАСЧЕТ АВТОМОБИЛЯ Кинематика и динамика кривошипно-шатунного механизма Кинематика кривошипно-шатунного механизма

Расчет кинематики и динамики двигателя

СВЕДЕНИЯ ИЗ КИНЕМАТИКИ И ДИНАМИКИ МЕХАНИЗМОВ

Сведения из кинематики и динамики механизмов Основные определения

Тела 1 — 1S0 — Масса — Вычисление твердые—Вращение 1 —396 Движение 1 —379, 381, 398, 401 Динамика 1 — 396 — Кинематика

ЭЛЕМЕНТЫ КИНЕМАТИКИ И ДИНАМИКИ Кинематика

ЭЛЕМЕНТЫ КИНЕМАТИКИ РАЗДЕЛ ТРЕТИЙ пыилиыиы И ДИНАМИКИ КИНЕМАТИКА

Элементы кинематики и динамики



© 2025 Mash-xxl.info Реклама на сайте