Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Машины Силы сопротивления

В отдельных случаях, характерных, например, для угольных комбайнов и врубовых машин, силы сопротивления "оказываются настолько большими, что двигатель не может разогнать машину и вслед за периодом ускоренного движения (за счет зазоров в кинематических цепях) следует резкое торможение, вызванное перегрузкой двигателя. Этот процесс называют несостоявшимся пуском.  [c.28]

Вследствие значительного выноса ковша вперед относительно передней опорной части гусениц тракторная лопата не отличается хорошей устойчивостью при зачерпывании. По этой причине для уменьшения опрокидывающего действия на машину сил сопротивления при зачерпывании тяжелых грузов в заводской инструкции даны следующие рекомендации  [c.101]


S . Приведенные моменты сил движущих и сил сопротивления зависят от механических характеристик машин, вошедших в агрегат. Механической характеристикой машины называется зависимость сил или моментов, приложенных и ее звеньям, от кинематических величин, характеризующих движение этих звеньев (перемещений, скоростей или ускорений).  [c.131]

Пример 1. Силы и массы машинного агрегата приведены к звену АВ (рис. (И). Момент движущих сил Мц изменяется в соответствии с графиком Мд = Мд(ф), момент сил сопротивления постоянен на всем цикле уста-  [c.165]

Силы, приложенные к машинному агрегату, и его массы приведены к звену АВ. Движение агрегата установилось. Один цикл установившегося движения соответствует углу фц = 2я. Приведенный момент сил сопротивления изменяется согласно ра4 Ику, а приведенный момент движущих сил Мд постоянен на всем цикле установившегося движения. Приведенный момент инерции масс звеньев машинного агрегата постоянен и равен / = = 0,2 кгм . Средняя угловая скорость звена АВ равна = ЗОсе/с .  [c.171]

ЦИКЛ установившегося движения соответствует углу (p,i — 2 . Приведенный момент сил сопротивления изменяется согласно графику, а приведенный момент движуш,их сил постоянен на всем цикле установившегося движения. Приведенный момент инерции масс звеньев машинного агрегата постоянен и равен / = 0,014 кгм средняя угловая скорость звена приведения (0(.р — 25 eл .  [c.172]

Силы, приложенные к машинному агрегату, и его массы приведены к звену АВ. Движение агрегата установилось. Один цикл установившегося движения соответствует углу фц = 2п. Приведенный момент сил сопротивления изменяется согласно  [c.173]

Т. икл установившегося движения агрегата делится на две части рабочий ход, происходящий при угле поворота вала двигателя фр = = л, и холостой ход, которому соответствует угол поворота того же вала Фх = 11я. Рабочая машина в первой части цикла (на рабочем ходу) загружена моментом сил сопротивления приведенного к валу  [c.175]

Например, у двигателя внутреннего сгорания движущей силой является давление расширяющегося газа на поршень. Силами сопротивления будут сила трения в подшипниках и цилиндрах, сопротивление воздуха, сопротивление той рабочей машины, которая приводится в движение двигателем, и т. п. При этом ео-противление рабочей машины, которая приводится двигателем в движение, будет производственным сопротивлением, а силы трения, сопротивление воздуха и т. д. будут непроизводственными сопротивлениями.  [c.207]


В большинстве механизмов движущие силы и силы сопротивления в течение времени установившегося движения непостоянны.Поэтому для определения коэффициента полезного действия подсчитывают работу всех движущих сил и производственных сопротивлений за один полный цикл времени установившегося движения машины. Например, если задан график  [c.310]

Как показано в 82, 2°, при периодических колебаниях скоростей начального звена машины (звена приведения механизма) во время установившегося и неустановившегося движений необходимо соединить начальное звено регулируемого объекта с особым механизмом, носящим название скоростного регулятора. Задача регулятора состоит в установлении устойчивого (стационарного) изменения скорости, режима движения начального звена регулируемого объекта, что может быть достигнуто выравниванием разницы между движущими силами и силами сопротивления. Если по каким-либо причинам уменьшается полезное сопротивление и регулируемый объект начинает ускорять свое движение, то регулятор автоматически уменьшает приток движущих сил. Наоборот, если силы сопротивления увеличиваются и регулируемый объект начинает замедлять свое движение, то регулятор увеличивает движущие силы. Таким образом, как только нарушается равновесие между движущими силами и силами сопротивления, регулятор должен вновь их сбалансировать и заставить регулируемый объект работать с прежними или близкими к прежним скоростями.  [c.397]

Ременный шкив СО динамо-машины имеет радиус 10 см размеры вала АВ указаны на рисунке. Натяжение верхней ведущей ветви ремня Г, = 100 Н, нижней ведомой 72 = 50 Н. Определить вращающий момент М и реакции подшипников Л и В при равновесии системы, пренебрегая весом частей машины (Л Р) — пара, образуемая силами сопротивления.  [c.75]

К валу машины, имеющему момент инерции /2, приложен момент сил сопротивления, зависящий от угловой скорости вала ф  [c.437]

Зависимость движущей силы или силы сопротивления (или моментов этих сил) от кинематических параметров, заданная аналитически или графически, называется механической характеристикой соответственно двигателя или рабочей машины.  [c.57]

Механическими характеристиками двигателя и рабС Чей машины называются также зависимости от кинематических параметров мош,-ностей движущих сил и сил сопротивления.  [c.57]

В машиностроении для наиболее экономичного использования энергии, расходуемой машиной, постоянство скорости при изменении сил сопротивления достигается за счет соответствующего изменения движущих сил, т. е. за счет увеличения или уменьшения количества подводимой энергии. При этом регулятор может воздействовать на механизм, увеличивающий или уменьшающий подачу движущей энергии, либо непосредственно (система прямого регулирования), либо через вспомогательный источник энергии — сервомотор (система непрямого регулирования).  [c.111]

Направляющие качения применяют в машинах, если необходимо 1) уменьшить силы сопротивления движению для перемещения деталей вручную и для перемещения тяжелых деталей 2) медленно равномерно перемещать или точно устанавливать детали 3) перемещать детали с высокой скоростью.  [c.468]

Силы и моменты сопротивления, совершающие отрицательную работу за время своего действия или за один цикл. Эти силы и моменты делятся, во-первых, на силы и моменты полезного сопротивления, которые совершают требуемую от машины работу и приложены к звеньям, называемым ведомыми, и, во-вторых, на силы и моменты сопротивления среды (газа, жидкости), в которой движутся звенья механизма. Силы сопротивления среды обычно малы по сравнению с другими силами, поэтому в дальнейшем они учитываться не будут, а силы и моменты полезного сопротивления будут называться просто силами и моментами сопротивления.  [c.140]

При установившемся движении машины ее кинетическая энергия не изменяется и сумма работ приложенных к ней движущих сил и сил сопротивления равна нулю  [c.183]


В технике работа сил обычно связана с преодолением различных сопротивлений. Для выполнения этой работы создается множество разнообразных машин и механизмов. Силы сопротивления которые преодолевает любая машина (механизм), можно разделить на две группы сопротивления, для преодоления которых машина или механизм и предназначены, и которые условно назовем полезными сопротивлениями Р и так называемые вредные сопротивления с> которые машине (механизму) приходится вынужденно преодолевать попутно с полезными. Работу по преодолению полезных сопротивлений назовем полезной и обозначим Работу  [c.133]

Переменная амплитуда вынужденных колебаний при резонансе а = 4Ы см растет прямо пропорционально времени, что представляет угрозу сохранности прибора и той машины, на которой прибор смонтирован (так как в действительности имеется, хотя бы небольшая, сила сопротивления движению, то уравнение вынужденных колебаний оказывается иным. См. ниже второй вариант решения задачи).  [c.113]

Так как первая сумма положительна, а вторая отрицательна, то при остановке машинного агрегата модуль суммы работ движущих сил меньше модуля суммы работ сил сопротивления.  [c.307]

Так как первая сумма положительна, а вторая отрицательна, то при установившемся режиме работы машинного агрегата модуль суммы работ движущих сил равен модулю суммы работ сил сопротивления на том же угловом перемещении вала (при подсчете этих величии за промежуток времени, равный периоду процесса).  [c.307]

Так как в механизмах и машинах действуют силы сопротивления, которые не потенциальны, то происходит уменьшение механической энергии. Эта энергия расходуется на работу непотенциальных сил и переходит в другие виды энергии (например, в тепловую). Следовательно, закон сохранения механической энергии в этих случаях неприменим, и для поддержания установившегося режима работы машины или механизма необходим приток механической энергии извне.  [c.333]

Силами полезного, или технологического сопротивления называют силы, для преодоления которых предназначена данная машина. К ним относят, например, силы сопротивления прессованию в прессах, силы сопротивления резанию металла и др. Силы технологического сопротивления приложены к выходным звеньям и препятствуют их движению. Они обычно определяются экспериментально для ряда последовательных положений звеньев механизма.  [c.58]

В качестве примера рассмотрим расчет характеристики регулятора радиального действия (рис. 31.8), применяемого в электрических счетных машинах и других устройствах. На валике 4 электродвигателя закреплен диск 2 с двумя грузиками 3, которые могут поворачиваться вокруг осей О. При уменьшении нагрузки частота вращения двигателя увеличивается и центробежная сила Рц возрастает. Преодолевая силу сопротивления пружин 5, грузики 3 с силой N прижимаются к внутренней цилиндрической поверхности стакана /, закрепленного на корпусе двигателя. При этом возникают силы трения Pf = /24, создающие тормозной момент регулятора Гр = 2Р 4 .  [c.396]

Записанные в приведенном виде, они называются уравнениями движения механизма в дифференциальной форме. Приведенная сила или момент в правой части этих уравнений может быть представлена алгебраической суммой двух слагаемых, одно из которых определено для двп/кущих сил, а другое — для сил сопротивления. Для машин различного технологического назначения силы движущие и силы сопротивления зависят от одного или нескольких параметров — перемещения, скорости и времени, что определяется механическими характеристиками двигателя и механизма исполнительного органа.  [c.283]

В реальных механизмах относительное движение звеньев всегда сопровождается действием сил сопротивления движению сил трения в кинематических парах, электромагнитного сопротивления в электромашинах, гидродинамического сопротивления в гидро-машинах и т. п. Поэтому колебательные движения звеньев сопровождаются действием сил неупругого сопротивления. Эти силы демпфируют колебания, т. е. способствуют гашению вибраций механизмов. Обычно силы демпфирования (гашения) в первом приближении принимают пропорциональными скорости движения. Тогда для схемы на рис. 24.3 вместо уравнения (24.2) будем иметь  [c.310]

Такое движение возможно только при условии, когда за один динамический цикл динн. ения звена приведения машинного агрегата работа движущих сил /4д оказывается равной работе сил сопротивления А , т. е. за этот цикл движения работа, затраченная двигателем, полностью расходуется на преодоление всех сил сопротивления, приложенных к звеньям. машинного агрегата, т. е.  [c.158]

Цикл установившегося движения агрегата делится на две части рабочи ход, продолжающийся = 0,1 сек, и холостой ход, продолжительность К0Т0]10Г0 равна сек. Рабочая машина в первой части цикла на рабочем ходу загружена моментом сил сопротивления, величина которого равна УИр = 50 нм, во время холостого хода во второй части цикла момент снл сопротивления оказывается равным Мх-  [c.174]

Известно, что приведенный момент двнжуш,их сил Мд изменяется согласно равенству УИд = УИдтах — ссо, где Мд ах = 400 нм, а с = 2,5 нмсек (рис. б). Приведенный момент сил сопротивления Мс задан графиком (рис. в), оричем max = 400 нм. Приведенный момент инерции масс звеньев двигателя и редуктора постоянен и равен /fl = 0,02 кгм . Приведенный момент инерции масс звеньев рабочей машины /3 пренебрежимо мал по сравнению с искомым моментом инерции маховика.  [c.175]

Выше было показано, что движение началыгого звеиа тем ближе к равномерному, чем больше приведенный момент инерции или приведенная масса механизмов манн ны. Увеличение приведенных масс или приведенных моментов инерции может быть сделано за счет увеличения масс отдельных звеньев механизмов. Практически это увеличение масс производится посадкой на один из валов машины добавочной детали, имеющей заданный момент инерции. Эта деталь носит название махового колеса, или маховика. Задачей маховика является уменьшение амплитуды периодических колебаний скорости начального звена, обусловленных b ui-ствами самих механизмов машины или периодическими изменениями соотношений между величинами движущих сил н сил сопротивления.  [c.381]


Силы сопротивления проявляют себя в различных местах механизма. Но все их можно привести к одному сечению и заменить одним моментом вязкого сопротивления. Поскольку для передачи П, замененной усло вным валом, скорость сечения Ь относительно сечения а составляет фм —фд (рис. 9.1, г), момент вязкого сопротивления, приложенный к рабочей машине М от передачи, выразится следующим образом  [c.256]

Простейи1ие машины являются системами с одной степенью свободы. На машины действуют движущая сила Р или вращающий момент Л1 р и сила сопротивления или момент сопротивления  [c.305]

Какова заиисммость между движущей силой и силой сопротивления в простейших машинах  [c.318]

В зависимости от источника внешнего силового воздействия силы делятся на двиокущие и силы сопротивления движению. Движущие силы (моменты) появляются при преобразовании какого-либо вида энергии в механическую энергию движения звеньев механизма. Силы сопротивления движению появляются при преобразовании механической энергии движущегося звена в другие виды энергии, как результат взаимодействия его с другим звеном механизма (силы непроизводственного сопротивления) либо с другими механическими системами. Если сила сопротивления является результатом взаимодействия звена с другой механической системой, то она называется силой производственного сопротивления. Например, в компрессорных машинах кинетическая энергия движущихся звеньев преобразуется в потенциальную энергию сжатого газа, в металлорежущих станках — в механическую энергию разрушения обрабатываемого материала.  [c.241]

Из зависимости (22.13) следует, что угловая скорость звена приведения за полный оборот не остается постоянной, а меняется, периодически принимая одинаковые значения, если не меняются законы изменения У (ф) и М (ф). Постоянный характер функций приведенных величин возможен только в случае установившегося движения механизма. Такое движение имеет место, если при работе машины приведенный момент сил движущих постоянно равен приведенному моменту сил сопротивления. В этом случае кинетическая энергия машины Е = 0,5УпСо не должна изменяться. Так как  [c.291]


Смотреть страницы где упоминается термин Машины Силы сопротивления : [c.115]    [c.242]    [c.45]    [c.174]    [c.212]    [c.387]    [c.135]    [c.61]    [c.19]    [c.183]    [c.183]    [c.183]   
Машиностроение Энциклопедический справочник Раздел 1 Том 2 (1948) -- [ c.62 ]



ПОИСК



Машины сопротивлением

Сила сопротивления



© 2025 Mash-xxl.info Реклама на сайте