Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Центр инерции свободных материальных

Влияние гироскопических сил на свободные колебания твердого тела с четырьмя степенями свободы. Для составления дифференциальных уравнений малых колебаний твердого тела при наличии гироскопических сил следует применять теорему о движении центра инерции системы материальных точек вместе с теоремой об изменении главного момента количеств движения системы материальных точек в относительном движении по отношению к центру инерции.  [c.624]


Теорема об изменении главного момента количеств движения системы материальных точек (со случаем сохранения) в относительном движении по отнощению к центру инерции системы щироко применяется в задачах динамики плоского движения твердого тела (см. следующий параграф) и движения свободного твердого тела, т, е. в тех случаях, когда движение твердого тела можно разложить на переносное вместе с осями координат, движущимися поступательно С центром инерции, и относительное по отнощению к этим осям.  [c.242]

Заметим, наконец, что равенство (I. 113) позволяет найти интеграл энергии также для движения свободной материальной системы относительно ее центра инерции, если в относительных координатах выполняется равенство (I. 119). Если рассматривается движение несвободной материальной системы относительно ее центра инерции, то и для движения этой системы можно найти интеграл энергии в том случае, когда в относительных координатах связи идеальные и стационарные. Конечно, может оказаться, что связи, идеальные в абсолютной системе координат, не будут идеальными в относительной системе, рассматриваемой при изучении движения механической системы относительно ее центра инерции, и наоборот.  [c.100]

Предположим, что исследуется движение свободной системы относите-телыю ее центра инерции. Допустим, что в относительных координатах существует потенциальная энергия П, являющаяся функцией взаимных расстояний точек материальной системы. Именно этот случай встречается в задачах небесной механики и родственных ей пробле.мах.  [c.101]

Теорема о движении центра инерции. — Центр инерции материальной системы движется как свободная точка, масса которой равна массе всей системы и которая находится под действием всех внешних сил, перенесенных параллельно им самим в эту точку.  [c.8]

Итак, мы нашли, что в силу закона сохранения импульса центр инерции замкнутой системы материальных точек движется прямолинейно и равномерно со скоростью V (опять в полной аналогии с радиус-вектором одной свободной материальной точки).  [c.37]

Далее доказывается теорема об изменении кинетической энергии системы, изучаются свойства кинетической энергии системы, указываются способы вычисления ее для твердого тела при различных случаях движения. В связи с последним рассматриваются осевые моменты инерции и их свойства. Затем доказывается теорема об элементарной работе сил, действующих на абсолютно твердое тело на основании определения работы сил, действующих на точки материальной системы, и теоремы о распределении линейных скоростей в свободном твердом теле. Здесь естественно вводятся понятия о К/ оменте силы относительно центра и оси, о главном векторе и главном моменте сил относительно произвольного центра.  [c.69]


Еще в 1878 г. Ф. А. Слудский высказал без доказательства теорему о том, что необходимым условием общего соударения свободных материальных точек, взаимно притягивающихся по закону Ньютона, является аннулирование всех постоянных интегралов площадей в движении системы относительно ее центра инерции. Подобную мысль высказал и К. Вейерштрасс Он показал, что при отличной от нуля нижней границе минимума взаимных расстояний точек системы координаты этих точек являются голоморфными функциями времени в полосе комплексной i-плоскости, ограниченной двумя симметричными относительно действительной оси прямыми. Исследуя вопрос о существовании соответствующих начальных условий движения, он пришел к заключению, что по крайней мере для задачи трех тел такие начальные условия не только существуют, но и представляют собой общий случай, в то время как парное и, тем более, общее соударение точек в конечный момент может произойти только при особых условиях. Вейерштрасс без доказательства также заметил, что координаты точек системы разлагаются в окрестности момента парного соударения t = в ряды по целым положи-J тельным степеням (fj — i) и зависят от бге — 2 произвольных постоянных. Эту теорему доказал П. Пенлеве . Он показал также, что если движение в классической задаче п тел, регулярное до момента ti, в этот момент нарушает регулярность, то минимум взаимных расстояний точек при t-у ti стремится к нулю. Если п = 3, то единственной особенностью движения может быть только парное или общее соударение тел в момент Если и 3, могут быть и такие особенности, когда некоторые из взаимных расстояний, не стремясь ни к каким определенным пределам при t ti, осциллируют в каких угодно границах. П. Пенлеве установил, что начальные условия движения, соответствующие парному соударению, должны удовлетворять определенным аналитическим соотношениям, однозначным относительно координат и алгебраическим относительно скоростей, если по крайней мере массы трех точек отличны от нуля. Найти эти условия удалось Т. Леви-Чивита и Г. Бискончини . Однако эти условия выражаются очень сложными рядами и могут быть использованы непосредственно только в случае, когда соударение происходит через весьма малый промежуток времени после начального момента.  [c.112]

Дальнейшее развитие проблемы п тел принадлежит Ю. Д. Соколову многочисленные исследования которого посвящены изучению особых траекторий системы свободных материальных точек, взаимно притягивающихся или отталкивающихся с силами, пропорциональными произвольной функции взаимных расстояний. Соколов обобщил на случай произвольных сил взаимо-114 действия в задаче п тел теорему Пенлеве о минимуме взаимных расстояний, теорему Шази о парном соударении в неизменяемой плоскости, теорему Дзио-бека о движении точек в неподвижной центральной плоскости при аннулировании кинетического момента системы относительно ее центра масс и теорему Слудского—Вейерштрасса об общем соударении тел. Он установил нижнюю границу радиусов сходимости разложений координат точек системы около момента регулярного движения. Обобпщв уравнение Лагранжа — Якоби, он исследовал поведение квадратичного момента инерции при стремлении t к некоторому особому моменту ti или оо. Соколов изучил траектории парного соударения в общей задаче трех тел, исследовал характер особых, Точек интегралов прямолинейного движения. Рассматривая ограниченную задачу трех тел в обобщенной постановке, он исследовал поведение искомых функций и доказал существование решения задачи, установил инвариантное соотношение, характеризующее условие соударения. Результаты этих исследований Соколов успешно применил к решению задач о притяжении к неподвижному и равномерно вращающемуся центрам.  [c.114]

По плоской фигуре, свободно лежащей на гладком горизонтальном столе, начинает двигаться материальная точка, перемещаясь из положения Л в положение В по некоторой траектории, не проходящей через центр инерции С фигуры. В начальный момент система находилась в покое. Показать, что угол а поворота фигуры относительно стола меньше угла ф = ААСВ под которым видна относительная траектория точки из центра инерции фигуры.  [c.54]


Для случая нескольких масс решение будет аналогичным. Кроме идеи сведения изучения движения тела к изучению его равновесия с учетом сил инерции, Я. Бернулли высказал мысль о возможном определении реакции связи. Истинное движение 161 ( 2 2) он разложил на свободное а 0 а2Я) и движение O l Qb2) вдоль стержня. Каждому движению он ставит в соответствие силу. Вертикальному движению alO a2Q), естественно, соответствует сила тяжести, а сила, соответствующая движению вдоль стержня, уравновешивается опорой А. По современным представлениям — реакцией связи. Ученик Я. Бернулли — Якоб Германн дал иную интерпретацию идеи использования сил инерции. В наиболее известном сочинении Форономия или две книги о силах и движениях твердых и жидких тел [200], решая задачу о нахождении центра колебаний физического маятника, он разлагает силу тяжести каждой материальной точки на две составляющие одна направлена по линии подвеса, другая — перпендикулярно  [c.137]


Смотреть страницы где упоминается термин Центр инерции свободных материальных : [c.844]    [c.590]   
Теоретическая механика (1981) -- [ c.0 ]



ПОИСК



Материальная

Центр инерции



© 2025 Mash-xxl.info Реклама на сайте