Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Металл циклических нагрузках

МЕТОДЫ ОЦЕНКИ ПОВРЕЖДЕННОСТИ МЕТАЛЛА циклической НАГРУЗКОЙ  [c.9]

Наибольшее практическое значение, так же как и для коррозионного растрескивания, в настоящее время имеют разрушения, связанные с одновременным воздействием на металл циклической нагрузки и электрохимической коррозии. Сопротивление металла коррозионной усталости, иными словами, его коррозионноусталостная прочность, или выносливость, характе-  [c.124]


Наиболее щироко в практике известны два случая коррозии металлов под напряжением, которые сопровождаются появлением коррозионных трещин коррозионная усталость и коррозионное растрескивание. Коррозионная усталость наступает при одновременном действии на металл циклической нагрузки и коррозионной среды.  [c.3]

Коррозионная усталость, представляющая собой сложный процесс разрушения металлов при одновременном воздействии на них химической или электрохимической коррозии и циклической нагрузки. Коррозионноусталостным разрушениям подвергается большое количество ответственных деталей машин и механизмов [138]. Наибольшее практическое значение (как и в случаях коррозионного растрескивания при статическом растяжении) в настоящее время имеют разрушения при одновременном воздействии на металл циклической нагрузки и электрохимической коррозии. Природа и механизм коррозионноусталостного разрушения металлов подобны описанным выше для случаев коррозионного растрескивания при статическом растягивающем напряжении. По данным советских исследователей [138], концентрация знакопеременных напряжений на ослабленных первоначальными очагами коррозии участках металла обусловливает более быстрое разблагораживание значений их потенциалов и ускоренное развитие трещин коррозионной усталости.  [c.213]

Сопротивление металла циклической нагрузке характеризуется пределом выносливости, т. е. наибольшим напряжением, которое может выдержать металл без разрушения за большое число циклов (для стали принимают 10 циклов). Предел выносливости чаще определяется на вращающемся образце (гладком или с надрезом) с приложением изгибающей нагрузки.  [c.137]

Циклической вязкостью называют свойство металлов частично превращать энергию упругих деформаций в теплоту вследствие внутренних потерь на трение. Чем больше циклическая вязкость, тем выше способность мета.тла гасить колебания при циклической нагрузке.  [c.170]

В настоящее время, например, аппараты и нефтепроводы рассчитывают лишь на прочность от действия статических нагрузок, без учета временных факторов разрушения. Между тем они работают в режиме малоциклового нагружения, которое в десятки раз ускоряет процессы повреждаемости металла в зоне дефектов и конструктивных концентраторов напряжений. Кроме того, недостаточная степень подготовки нефти на промыслах способствует коррозионной активности рабочей среды. Циклические нагрузки в условиях коррозионной активности рабочей среды вызывают усиление усталостных процессов и особенно сильно в зонах концентрации напряжений. Это объясняется проявлением локального динамического механохимического эф-  [c.365]


Режим и технология точения также могут определенным образом влиять на усталостную прочность. Высокая скорость резания и большая подача заметно снижают предел выносливости вследствие повышения шероховатости поверхности и появления неблагоприятных поверхностных напряжений. Однако имеются режимы резания, которые создают поверхностный наклеп и сжимающие напряжения, повышающие предел выносливости титана. Замечено отрицательное влияние на усталостную прочность титановых сплавов охлаждения жидкостями (вода, эмульсия и пр.) при высоких скоростях резания точением. В этом случае происходит поверхностное наводороживание и даже появление гидридных пленок и слоев, способствующих возникновению растягивающих напряжений и хрупкости поверхности. Во всех случаях конечные операции механической обработки деталей из сплавов титана, подвергающихся систематическим циклическим нагрузкам, необходимо строго регламентировать, а еще лучше предусмотреть специальную поверхностную обработку, снимающую все неблагоприятные поверхностные явления и упрочняющую металл.  [c.181]

Ранее была отмечена особая чувствительность усталостной прочности титановых сплавов к характеру финишной поверхностной обработки.. Естественно, что многие исследования были направлены на разработку специальных методов поверхностного упрочнения титана, максимально повышающих его предел выносливости. Выявлен наиболее эффективный способ—применение различных видов ППД. Этот способ уже широко используют для многих металлов, а для титановых сплавов он оказался крайне необходимым и перспективным. По исследованиям в этом направлении в настоящее время постоянно публикуется большое число работ (главным образом в периодической литературе). Можно без преувеличения утверждать, что основные резервы повышения усталостной прочности титановых сплавов состоят именно в правильном выборе метода ППД и финишного сглаживания поверхности деталей, подвергающихся циклической нагрузке. Если для стали основная польза ППД заключается в создании сжимающих поверхностных напряжений, то для титановых сплавов, как уже показано, имеет не меньшее значение повышение прочности (за счет наклепа) и однородности механических свойств поверхностных слоев. Часто поверхностный наклеп титана необходим, чтобы снять неблагоприятный эффект предшествующей обработки, которую исключить из технологического процесса не всегда уда ется (например, шлифование или травление).  [c.196]

Циклическое нагружение материала приводит к более сложной ситуации протекания пластической деформации у кончика распространяющейся трещины, что связано с формированием нескольких зон пластической деформации. Нарастание потока дефектов и формирование разрешенной для металла последовательности диссипативных структур происходит в каждом цикле на восходящей ветви нагрузки. После снятия нагрузки имеет место частичная релаксация и распад некоторых из возникших на восходящей ветви нагрузки дефектных структур. Поэтому поток энтропии применительно к циклической нагрузке в зоне пластической деформации следует рассматривать отдельно  [c.146]

Циклическая вязкость Д , мм — способность металла поглощать энергию в необратимой форме при циклических нагрузках. Характеризуется шириной петли гистерезиса при напряжениях, равных пределу выносливости.  [c.14]

Предел выносливости зависит от формы поперечного сечения (при одинаковой высоте) и схемы нагружения, увеличиваясь с уменьшением объема материала, находящегося в области действия максимальных напряжений. При сопоставлении результатов, полученных на круглых и на плоских образцах, следует иметь в виду, что цилиндрические образцы при циклических нагрузках имеют более высокую стойкость по сравнению с призматическими. Объясняется это меньшим объемом металла в зоне максимальной напряженности цилиндрических образцов, а также тем, что увеличение длины трещины в цилиндрических образцах вначале ведет к увеличению момента сопротивления сечения н лишь потом к его уменьшению (при длине трещины 0,1 от диаметра образца момент сопротивления сечения образца равен первоначальному). У призматических же образцов момент сопротивления изгибу с появлением трещины сразу же резко уменьшается.  [c.30]


О том, насколько тот или иной металл чувствителен к концентрации напряжений в условиях циклической нагрузки, обычно судят по величине эффективного коэффициента концентрации напряжений.  [c.121]

Усталость металлов при ударных циклических нагрузках. Томск, Томский инженерно-строительный институт, 1971,  [c.287]

Удар способствует динамическому внедрению частиц, породы в металл и вызывает остаточные деформации в металле и нагрев соударяющихся тел. Длительное действие циклической нагрузки приводит к возникновению микроскопических трещин, которые являются очагами выкрашивания, скалывания и смятия менее твердых участков материала.  [c.28]

Результаты исследований показали, что длительное влияние статических напряжений и среды не вызывает существенных изменений механических свойств и коррозионного растрескивания. В то же время циклическими испытаниями установлено, что у образцов сварных соединений значение условного предела выносливости значительно меньше, а интенсивность снижения коррозионноусталостной прочности больше, чем у основного металла. Металлографические исследования свидетельствовали о том, что разрыхления и трещины возникают главным образом по границам зон термического влияния. Это обусловлено тем, что циклическая нагрузка интенсифицирует коррозию под напряжением по сравнению со статической, в большей степени приводя к неоднородности физикомеханических и электрохимических свойств в металле сварного соединения. Трещины распространяются преимущественно внутрикристаллитно, что говорит  [c.236]

Можно считать установленным, что пластические сдвиги, возникающие в металле под действием циклической нагрузки, приводят к наклепу и перераспределению напряжений как между зернами, так и внутри самих зерен. Наклеп для многих металлов сопровождается увеличением твердости. Пластическая деформация накапливается в результате скольжения и двойникования вдоль тех же кристаллографических плоскостей и по тем же направлениям, что и при действии статических нагрузок. И. А. Одинг дополнил эту теорию, обратив внимание на то, что циклические повторяющиеся напряжения вызывают в металле два одновременно протекающих явления упрочнение и разупрочнение Л. 31]. Упрочнение связывается с наклепом и старением, а разупрочнение — с появлением напряжений второго рода, искажений третьего рода, дроблением кристаллов на блоки.  [c.159]

Эффективность действия упрочнения и разупрочнения в процессе циклической нагрузки проверила С. И. Киш-кина с сотрудниками. Темп снин<ения хрупкой прочности разных металлов различен и зависит от величины циклической вязкости. Чем она выше, тем сильнее при прочих  [c.159]

В процессе циклического нагружения также снижается хрупкая прочность и повышается критическая температура хрупкости. Заметное снижение критериев хрупкой прочности должно наблюдаться не сразу после приложения циклической нагрузки, а после определенного числа циклов нагружения, соответствующего накоплению в кристаллической решетке металла изменений (разрыхление кристаллической решетки, связанное с образованием ультра- и субмикроскопических нарушений сплошности).  [c.33]

Особую остроту приобретает вопрос о критериях оценки поведения чугуна с шаровидным графитом в условиях ударной нагрузки. Можно считать очевидным, что ударная вязкость — сила сопротивлению разрушению при однократно приложенной ударной нагрузке — не выявляет особенностей чугуна и не дает количественной характеристики, которую можно было бы использовать при расчетах на прочность. Между тем повышенная циклическая вязкость дает основание считать, что циклическая нагрузка воспринимается большим объемом металла, в результате чего повышается надежность работы чугуна но сравнению со сталью. Эти положения проверены и подтверждены ЦНИИТМАШем на установке для испытаний ударно-циклической прочности материалов [261].  [c.208]

Качество поверхностного слоя определяется совмсупносгью харак-теристик физико-механическим o foяниeм, микроструктурой металла поверхностного слоя, наероховатостью поверхности. Состояние поверхностного слоя влияет на эксплуатационные свойства деталей машин изяосо- стойкость, виброустойчивость, контактную жесткость, прочность соединений, прочность конструкций при циклических нагрузках и т. д.  [c.407]

В настоящее время установлено, что структура металла при циклических нагрузках не меняется. Начало разрушения носит чисто местный характер. В зоне повышенных напряжений, обусловленных конструкти1 Ными, технологическими или структурными факторами, может образоваться микротрещина. При многократном изменении напряжений кристаллы, расположенные в зоне трещины, начинают разрушаться и трещина проникает в глубь тела.  [c.389]

Циклическое упрочнение обычно наблюдается у пластичных металлических материалов, а циклическое разупрочнение - у высокопрочных или предварительно деформированных материалов. У металлов и сплавов, имею-1ЦИХ физический предел текучести, вначале наблюдается циклическое разупрочнение, связанное с негомогенностью пластической деформации на площадке текучести (при циклических нагрузках Г1иже предела текучести), а затем упрочнение.  [c.35]

В практике часто встречаются случаи, когда циклической нагрузке подвергаются сопряженные детали машин. В этом случае из-за контактного трения поверхностные слои металла разрушаются. Еще в 1911 году Е. М. Иден и др. описали случай разрушения усталостных образцов не в наиболее напряженном сечении, как этого следовало ожидать, а в более массивном сечении -в местах контакта образца с цангой. Наличие контактнш о трения при циклическом нагружении в общем случае приводит к снижению циклической прочности изделий процессы, развивающиеся при этом, названы фрсттинг-коррозией или фреттинг- усталостью.  [c.94]


В настоящее время установлено, что структура металла при циклических нагрузках не меняется. Разрушению предшествует многократно сменяющаяся прямая и обратная пластическая деформация в наиболее слабых плоскостях наименее удачно расположенных кристаллов. Это приводит к тому, что кристаллическое зерно, сохраняя в основном свою форму и связь с соседними зернами, постепенно разделяется на части полуразрушенными разрыхленными прослойками, имеющими определенную кристаллографическую ориентацию.  [c.474]

Коррозионная усталость. Коррозионная среда отрицательно влияет на усталостную прочность практически всех конструкционных металлов и сплавов. Так, в речной воде, являющейся сравнительно малоагрессивной средой, усталостная прочность нержавеющих сталей снижается на 10— 30 %, углеродистых и легированных конструкционных сталей —в 1,5—2 раза, высокопрочных алюминиевых сплавов —в 2—3 раза. Особенно сильное воздействие среды наблюдается при наличии концентраторов напряжений. Как правило, при испытании в коррозионных средах не наблюдается физический предел выносливости, поэтому при большом числе циклов (10 —10 ) нагружения несущая способность образца может оказаться очень низкой. Это заставляет значительно увеличивать запасы прочности конструкций, подвергающихся циклическим нагрузкам и работающих в коррозионной среде.  [c.158]

Предельная прочность при циклических нагрузках достигается значительно раньше, чем при статических. Усталостное разрушение может возникнуть при напряжениях ниже предела текучести. Особенность миагоциклоБОй усталости — макродеформация объема металла, как правило, отсутствует. Деталь в целом деформируется упруго, но происходит местная повторная упруго-пластическая деформация отдельных наиболее неблагоприятно ориентированных по отношению к силовому полю кристаллов, сопровождающаяся циклическим наклепам. После достижения критической степени искажения решетки происходит разрыв межатомных связей.  [c.9]

Циклическая аязлость — особое, не связанное с обычной вязкостью свойство металла выдерживать повторную пластическую де-фо рмацию при циклических нагрузках. Объясняется наличием в металлах внутреннего трения и количественно характеризуется шириной петли гистерезиса при переменных напряжениях.  [c.142]

ЧТО реальные нагрузки чуть-чуть выше (например, в результате расчетной недооценки, коррозии, частичного износа и т. д.), что соответствует уровню В на рис. 3. Тогда разрушение может произойти в пределах требуемого срока службы. На рис. 4 сравниваются усталостные кривые для композиционного материала и металла. Первый может без риска разрушения подвергаться более высоким циклическим нагрузкам, чем второй. Кроме того, для композиционного материала можно более надежно предсказывать срок службы, так как его кривая почти линейна и не имеет плоской площадки, как обычиая усталостная кривая для металлов.  [c.101]

Усталость металла — один из видов физического износа. Это процесс постепенного изменения работоспособности деталей под воздействием переменных по величине и направлению нагрузок. Усталость проявляется в виде трещин, называемых усталостными, которые возникают преимущественно в деталях, испытывающих при работе многократные знакопеременные циклические нагрузки. Чаще всего они возникают в местах концентрации напряжений — расположения технологических дефектов типа несплошностей, галтелях, у отверстий, в местах резкого перехода, глубоких рисок и т. д. Возникновению усталостных трещин способствуют тдкже структурная неоднородность металла и местные повреждения в виде забоин, рисок, вмятин, царапин, появляющихся при неправильном техническом обслуживании оборудования.  [c.9]

По теории Фрейденталя и Вейнера локальный нагрев при действии циклической нагрузки является результатом множественного скольжения вдоль близко расположенных плоскостей скольжения. Тепло, возникающее при этом, аккумулируется внутри областей металла, охваченных полосами скольжения. При действии статических нагрузок этого не происходит, так как тепло, возникающее в процессе сдвига, быстро передается другим, более отдаленным плоскостям скольжения.  [c.55]

На рис. 1, а приведены кривые изменения микротвердости переходных слоев биметалла Ст. 3+Х18Н10Т, измеренной в рабочей золе образца в условиях усталостного нагружения при 20° С. Микротвердость обезуглероженного слоя и слоя стали Ст. 3 незначительно повышается при нагружении до 12-10 что отражает процесс циклического упрочнения металла. Достигнув насыщения, слои начинают разупрочняться. По мере приложения циклической нагрузки накопление пластической деформации в отдельных микрообъемах происходит неравномерно, в первую очередь интенсивно упрочняются микрообъемы, лежащие в наиболее напряженном участке образца, и таким образом рабочая зона находится в неравномерном нагруженном состоянии. При достижении насыщения происходит выравнивание значений микротвердости.  [c.79]

Исследовалась кинетика образования диффузионной зоны бимета.лла, полученного путем электродуговой наплавки материалов, в зависимости от совместного влияния величины циклического нагружения и температуры нагрева. Показано, что совместное действие циклической нагрузки и нагрева оказывает наиболее интенсивное влияние на образование зон обезуглероживания в основном и науглероживания в наплавленном металле.  [c.164]

Рис. 2. Влияние микроиеоднородного пластического деформирования поли-кристаллического металла на развитие иеупругих деформаций (д), изменение физико-механических свойств (б) и исчезновение площадки текучести (в) при циклических нагрузках (пояснения в тексте). Рис. 2. Влияние микроиеоднородного <a href="/info/277451">пластического деформирования</a> <a href="/info/370338">поли-кристаллического</a> металла на развитие иеупругих деформаций (д), <a href="/info/441162">изменение физико-механических свойств</a> (б) и исчезновение <a href="/info/7017">площадки текучести</a> (в) при <a href="/info/6994">циклических нагрузках</a> (пояснения в тексте).
Изменение частоты приложения циклической нагрузки в диапазоне 3—100 Гц практически не влияет на усталость в воздухе гладких образцов из сталей различных классов. В то же время повышение частоты нагружения от 0,003 до 50 Гц увеличивает число циклов до разрушения кадмия и висмута, причем тем больше, чем ниже уровень циклической нагрузки (иногда на два порядка и больше) (Шиба-ров В.В. и др. [184, с. 29—32]), Увеличение частоты нагружения от 50 до 283 Гц резко снижает циклическую долговечность лантана и галлия. Для индия частотный фактор существенно зависит от уровня циклических нагрузок. Сложный характер зависимости частотного фактора авторы объясняют скоростным эффектом, влиянием частоты нагружения на суммарную деформацию и диабантным эффектом. Первый проявляется в значительной степени при низких частотах и несущественно — при высоких. Второй и третий эффекты проявляются в основном при высоких частотах. В зависимости от того, какой эффект вносит больший вклад, сопротивление усталости металлов при повышении частоты нагружения может увеличиваться или уменьшаться. Для алюминиевых сплавов частотный фактор в воздухе также может проявляться с интенсивностью, зависящей от их структурного состояния.  [c.116]



Смотреть страницы где упоминается термин Металл циклических нагрузках : [c.71]    [c.163]    [c.30]    [c.30]    [c.45]    [c.77]    [c.72]    [c.148]    [c.619]    [c.618]    [c.198]    [c.300]    [c.112]    [c.112]   
Основы металловедения (1988) -- [ c.54 , c.56 ]



ПОИСК



Кинетика разрушения металлов при циклических нагрузках

Нагрузка циклическая

Сопротивление материалов Усталость металлов при циклических нагрузках

Сопротивление усталости сварных соединений и методы ее повышеПрочность основного металла при переменных (циклических) нагрузках

Ч асть первая ХАРАКТЕРИСТИКИ УСТАЛОСТНОЙ ПРОЧНОСТИ i И МЕТОДЫ ИХ ОПРЕДЕЛЕНИЯ Общие сведения. Методы оценки поврежденности металла циклической нагрузкой

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте