Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пуассона решение волнового уравнения

Один из многочисленных интегралов Пуассона , встречающихся в теории уравнений в частных производных, дает решение волнового уравнения с начальными условиями  [c.223]

ИЗОБРАЖЕНИЙ МЕТОД — один из методов решения краевых задач матем. физики (для Гельмгольца уравнения, Пуассона уравнения, волнового уравнения и др.), заключающийся в сведении исходной задачи отыскания поля заданных (сторонних) источников в присутствии граничных поверхностей к расчёту поля тех же и нек-рых добавочных (фиктивных) источников в безграничной среде. Последние помещаются вне области отыскания поля исходной задачи и наз. источниками-изображениями. Их величина и положение определяют ся формой граничных поверхностей и видом граничных условий.  [c.114]


Полученные Пуассоном и Остроградским результаты содержат математическое обоснование положения, обобщающего схему и выводы Гюйгенса, изложенные в первой главе Трактата о свете (см. выше, стр. 256—260). Первоначальное возмущение (источник) может быть не точечным, оно может захватывать трехмерную область, но оно остается, условно говоря, импульсивным — оно относится к определенному моменту времени. Если поведение среды описывается дифференциальными уравнениями типа волнового (волновое уравнение, которое рассматривал Пуассон в работе 1819 г., соответствует одномерному — скалярному случаю, система уравнений теории упругости, изучавшаяся Остроградским и Пуассоном, соответствует трехмерному — векторному случаю), то при отсутствии границ существует решение этих уравнений, удовлетворяющее заданным начальным условиям и описывающее процесс распространения начального возмущения в среде. Этот процесс происходит с определенной скоростью, и в каждый данный момент в возмущенном состоянии находится только вполне определенная область среды. Любая точка среды находится в таком состоянии в течение вполне определенного конечного промежутка времени At, и в течение этого времени она является  [c.275]

Изложение некоторых математических методов решения уравнений Лапласа. Пуассона, волнового уравнения в призматических, цилиндрических и сферических областях. Подробно исследован, в частности, предложенный автором вариант метода разделения переменных, где функции, по которым производится разложение, удовлетворяют однородным граничным условиям — независимо от граничных условий для искомого решения. Большое внимание уделено электростатике, в частности, впервые установлен характер поля на ребре диэлектрических клиньев. Исследованы некоторые нестационарные задачи, фокусировка электронных пучков с учетом пространственного заряда и т. д.  [c.270]

С учетом сказанного общее решение неоднородного волнового уравнения (2.12), по аналогии с уравнением Пуассона (2.13), можно записать в виде  [c.47]

XIX столетие, в особенности его вторая половина, было эпохой замечательных успехов математической физики, Пуассон, Коши, Грин, Кирхгоф и особенно Стокс и Релей — вот очень неполный перечень имен, если его можно считать достаточным. Однако, за исключением обсуждения Стоксом вопроса о природе естественного и частично поляризованного света как суперпозиции многих поляризованных волн (разд. 5.13 этой книги), основные проблемы оптики не были решены. Поиски направлялись скорее на умение математически формулировать сложные явления, чем на проникновение в физическую сущность простых явлений. Были найдены координатные системы, в которых волновое уравнение допускает разделение переменных. Толкование Френелем принципа Гюйгенса было математически обосновано Кирхгофом. Бесселевы и родственные им функции стали могущественным оружием. Проблемой, типичной для той эпохи, было рассеяние света однородным шаром, что является одной из главных тем этой книги. Она оказалась одной из весьма трудных проблем, и, хотя многие частные случаи были рассмотрены ранее, ее полное решение было сформулировано Ми только в 1908 г.  [c.17]


Углубленный курс классической механики долгое время считался обязательной частью учебных планов по физике. Однако в настоящее время целесообразность такого курса может показаться сомнительной, так как студентам старших курсов или аспирантам он не дает новых физических понятий, не вводит их непосредственно в современные физические исследования и не оказывает им заметной помощи при решении тех практических задач механики, с которыми им приходится встречаться в лабораторной практике. Но, несмотря на это, классическая механика все же остается неотъемлемой частью физического образования. При подготовке студентов, изучающих современную физику, она играет двоякую роль. Во-первых, в углубленном изложении она может быть использована при переходе к различным областям современной физики. Примером могут служить переменные действие— угол, нужные при построении старой квантовой механики, а также уравнение Гамильтона — Якоби и принцип наименьшего действия, обеспечивающие переход к волновой механике, или скобки Пуассона и канонические преобразования, которые весьма ценны при переходе к новейшей квантовой механике. Во-вторых, классическая механика позволяет студенту, не выходя за пределы понятий классической физики, изучить многие математические методы, необходимые в квантовой механике.  [c.7]

Соотношения (1.53) следует рассматривать как ориентировочные более строгие количественные расчеты базируются на точном учете формы потенциальной ямы для свободных носителей заряда в ОПЗ — рис.1.13,6. Для определения положений уровней размерного квантования и соответствующих волновых функций необходимо совместно решать уравнения Шредингера и Пуассона. Это решение должно быть самосогласованным, поскольку от вида собственных функций зависит фор-  [c.44]

Псевдоволновое число 516 Псевдоволново вектор 484 Псевдочастота 484, 516 Пуассона решение волнового уравнения 224, 225, 229 Пфаффа задача об интегрируемости дифференциальных форм 126 —теорема 153  [c.610]

В полном соответствии с предьщущим анализом решения уравнения Пуассона объемный интеграл в (2.18) есть частное решение неоднородного волнового уравнения. С физической точки зрения объемный интеграл представляет часть обтцего решения волнового уравнения (2.12), обусловленную всеми акустическими источниками, расположенными внутри V, а поверхностный интеграл представляет собой общее решение однородного волнового уравнения и физически соответствует изменению состояния жидкости, обусловленному всеми акустическими особенностями, расположенными за пределами поверхности S, охватывающей область V, т.е. Ф(х, I) = ф(х, i)k + ф(х, t)s.  [c.48]

В случае ядерного вещества [3.18] трехмерные уравнения (3,83), (3.84) также имеют мультисолитонное решение, что соответствует ядру, состоящему из нескольких нуклонов. При этом систему уравнений следует дополнить соответствующим числу нуклонов условием нормировки и принципом Паули. При больших энергиях рЕ >1) первым членом в (3.84) можно пренебречь, и тогда вместе с условиями нормировки получаем уравнение, описывающее кулоновское самовоздействие волновой функции. В этом случае уравнение (3.84) есть уравнение Пуассона.  [c.68]


Смотреть страницы где упоминается термин Пуассона решение волнового уравнения : [c.300]    [c.152]    [c.305]    [c.305]    [c.305]   
Линейные и нелинейные волны (0) -- [ c.224 , c.225 , c.229 ]



ПОИСК



298, 300—304,400, 577 волновое решение волнового—, 314—317 — для

Волновое уравнение и его решение

Пуассон

Пуассона уравнение

Решение волновое

Уравнение волновое уравнение

Уравнения Пуассона си. Пуассона уравнение

Уравнения волновые



© 2025 Mash-xxl.info Реклама на сайте