Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фабри —Перо модуляция

В приёмниках на основе фазовой модуляции света приём звука осуществляется с помощью интерферометрия. схем (Маха — Цендера, Майкельсона, Фабри — Перо и др.) благодаря интерференции световых волн, по-разному промодулированных звуком. Изменение фазы световой олны Дф происходит в результате изменения эфф. показателя преломления Пдф и длины световода L под действием звукового давления р  [c.461]

Приведенные два примера продемонстрировали, что оптическая обратная связь, создаваемая резонатором Фабри — Перо, значительно увеличивает длину взаимодействия и, следовательно, глубину модуляции при данной величине напряжения. Однако это увеличение возможно лишь для тех оптических частот, которые удовлетворяют условиям резонанса Фабри — Перо. Иными словами, к  [c.315]


Таким образом, в моноимпульсных лазерах с неустойчивыми резонаторами следует использовать преимущественно электрооптические или пассивные (с насыщающимся поглотителем) затворы для спектральной селекции годятся главным образом эталоны Фабри — Перо и интерференционно-поляризационные фильтры, по прохождении которых свет не меняет своего направления. Однако и здесь приходится считаться еще с тем, что в любом линейном неустойчивом резонаторе по крайней мере в одном из двух противоположных направлений распространяется не плоская, а сферическая волна. В этих условиях введение того или иного фильтра не будет приводить к модуляции интенсивности по сечению резонатора, только если угловая ширина максимума пропускания фильтра превышает угол раствора сферической волны. В результате на параметры фильтра, а с ними и на достигаемую с его помощью минимальную ширину спектра накладываются ограничения (соответствующие данные для случая эталона  [c.228]

Ограничение уровня интенсивности исходного изображения можно выполнить, если изменения интенсивности изображения представить в виде фазовой модуляции прозрачной пластинки, помещенной между зеркалами прецизионного интерферометра Фабри— Перо [5, 20] ). Пропускание интерферометра Т х, у) при  [c.613]

Интерферометр Майкельсона, используемый как С. п. с амплитудной модуляцией (СИСАМ, рис. 2 в ст. Интерферометр Майкельсона), имеет при равной разрешающей силе такую же светосилу, как и интерферометр Фабри — Перо, т. 0. он также имеет преимущество в светосиле по сравнению с дифракционным и призменным спектрометрами. Однако выигрыш в отношении сигнал/шум СИСАМ дает лишь в том случае, если регистрируемые шумы определяются лишь шумами приемника, т. е. если их величина не зависит от величины полного потока радиации, попадающего на приемник (что, напр., имеет место в инфракрасной области спектра).  [c.12]

В О. п. 3. на основе одноплечевого интерферометра Фабри — Перо модуляция фазы света в световоде преобразуется в модуляцию интенсивности благодаря многолучевой интерференции лучей разл. порядков отражения от торцов световода.  [c.461]

Для перестройки и сужения спектра генерации в лазерах на красителях используются дисперсионные светофильтры и призмы, интерферометры Фабри — Перо, дифракционные решетки, а также селективные элементы, работающие на принципе распределенной обратной связи. В РОС-лазерах обратная связь осуществляется за счет брэгговского отражения излучения от периодической структуры, возникающей в акгизной среде в результате модуляции ее показателя преломления. Введение одного селектирующего элемента сужает спектр генерации примерно до 1 нм без существенного снижения выходной мощности. Получение более узких линий достигается за счет комбинации нескольких селекторов и сопряжено со значительными потерями выходной мощности.  [c.957]


Существует много способов М. с. на основе физ. аффектов (алектрооптический, магнитооптический, упругооптический и др.), возникающих при распространении света в разл. средах. Для такой М. с. применяют управляемый двулучепреломляющий элемент из материала, обладающего естественной или наведённой анизотропией. Внеш. управляющее поле (напр., электрическое или поле упругих напряжений) приводит к изменению оптич. характеристик среды. В широко распространённых модуляторах на основе Покпельса эффекта фазовый сдвиг между обыкновенным и необыкновенным лучами линейно зависит от величины напряжённости электрич. ноля, а в модуляторах на основе Керра эффекта — зависимость квадратичная. Для получения амплитудной М. с. электрооптич. вещество обычно помещают между скрещенными поляризаторами. Важным свойством электрооптич. эффекта является его малая инерционность, позволяющая осуществлять М, с. вплоть до частот 10 Гц. В электрооптич. модуляторах ослабление модулирующего сигнала не зависит от интенсивности модулируемого света, и потому для увеличения глубины модуляции используют многократное прохождение света через один и тот же модулирующий кристалл. Примером может служить модулятор на основе интерферометра Фабри — Перо, заполненного электрооптич. средой.  [c.184]

Появление лазеров вызвало интенсивное развитие методов внутр. М, с., основанных на управлении когерентным излучением за счёт изменения параметров лазера. При этом мы. устройства, применяемые как внеш. модуляторы, номещаются внутри оптического резонатора лазера. Используя разл. способы внутр. модуляции, получают любой вид М. с. амплитудный, частотный, фазовый и поляризационный. Частотой излучения лазера управляют, изменяя добротность оптич. резонатора лазера, напр. менян оптич. длину резонатора. С этой целью одно из зеркал резонатора закрепляют либо на магнитострикционном стержне (см. Магнитострикционный преобразователь), либо на пьезоэлементе и изменяют длину резонатора синхронно с модулирующим напряжением. Тот же эффект достигается путём изменения показателя преломления среды, заполняющей резонатор, для чего используется электрооптич. кристалл. Частотную модуляцию излучения лазера можно получить также при наложении на активную среду магн. или электрич. полей (см. Зеемана эффект, Штарка эффект), под действием К-рых происходит расщепление и смещение рабочих уровней атомов, ответственных за генерацию когерентного излучения. Изменяя величину коэф. усиления, получают амплитудную модуляцию излучения лазера. Для этого воздействуют на разность населённостей активной среды, либо изменяя мощность её возбуждения, либо используя всцомогат. возбуждение, приводящее к-перераспределению населённостей. Амплитудная модуляция излучения может быть получена и при помощи модуляции тока разряда газовых или полупроводниковых лазеров, работающих в непрерывном режиме. Одним из методов управления когерентным излучением является модуляция величины обратной связи лазера, т. е. коэф. отражения зеркал резонатора. С этой целью используют резонатор, одно из зеркал к-рого вращается с большой скоростью, и потому условия генерации выполняются лить в короткие промежутки времени. Вместо зеркал часто используют вращающуюся призму полного внутр. отражения. Изменение величины обратной связи можно получить, заменяя одно из зеркал на систему зеркал, образующих интерферометр Фабри — Перо. Коэф. отражения такого резонатора зависит от расстояния между зеркалами, изменяя к-рое можно модулировать интенсивность излучения и получать т. н. гигантские импульсы, мощность излучения в к-рых существенно превосходит мощность непрерывной генерации. Наконец, излучение лазеров также модулируют, изменяя добротность оптич. резонатора путем введения потерь, величина к-рых управляется внеш. сигналом. Для этого используют модуляторы на основе элек-  [c.184]

В данном разделе мы исследуем вопрос о том, к чему приводит включение электрооптического кристалла в резонатор Фабри — Перо. Поскольку в оптическом резонаторе свет отражается многократно, эффективная длина взаимодействия светового пучка в элек-трооптическом кристалле сильно возрастает. Это существенно увеличивает глубину модуляции как в фазовых, так и в амплитудных модуляторах. Рассмотрим теперь эти устройства более подробно.  [c.310]


РИС. 8.6. Зависимость коэффициента пропускания электрооптического модулятора Фабри — Перо от приложенного напряжения. Модулятор смещен в рабочую точку, расположенную на полувысоте максимума пропускания. Небольшое приложеииое синусоидальное напряжение приводит к модуляции иитеисивности на выходе относительно точки смещения.  [c.312]

Если падающий световой пучок является монохроматическим, то интенсивность прошедшего пучка зависит от величины ф, которая, как следует из (8.2.6), является электрически перестраиваемой. Кроме того, если резонатор Фабри — Перо смещен таким образом, что коэффициент его пропускания в отсутствие модулирующего напряжения равен 50%, то интенсивность прошедшего излучения будет сильно модулироваться относительно малыми модулирующими напряжениями. Это иллюстрируется на рис. 8.6. Большая глубина модуляции обусловлена резким пиком пропускания, разумеется, при условии, что резанатор имеет высокую добротность. Действительно, в соответствии с выражением (8.2.3) наклон кривой пропускания в точке, расположенной на ее полувысоте, запишется в виде  [c.312]

Параметрическое усиление можно использовать для создания лазеров, помещая световод в резонатор Фабри-Перо. Такой четырехфотонный волоконный лазер недавно был продемонстрирован в эксперименте [36]. При накачке импульсами длительностью 100 пс на длине волны 1,06 мкм от Nd ИАГ-лазера с модуляцией добротности и синхронизацией мод на выходе волоконного четырехфотонного лазера наблюдались импульсы длительностью 65 пс на длине волны 1,15 мкм. Длина резонатора подстраивалась таким образом, чтобы накачка была синхронной. Ширина спектра генерации составляла 100 ГГц в соответствии с формулой (10.4.7).  [c.306]

Помеш,ение в резонатор частотного фильтра может радикально изменить ситуацию [6]. Авторы исследовали генерационные характеристики импульсного лазера на фосфатном стекле с активной синхронизацией мод и модуляцией добротности. В качестве фильтра использовался эталон Фабри — Перо толш,иной 0,25 мм с шириной полосы пропускания 15 см . Благодаря фазовой самомодуляции и ограничению полосы усиления длительность импульсов в цуге монотонно уменьшалась от 40 до 4 пс. Наивысшее спектральное качество достигалось в конце цуга.  [c.244]

Степень повышения контраста изображений, как говорилось выше, зависит от нелинейности и крутизны модуляционной характеристики оптической Среды. В этой связи представляет интерес также использование дополнительушх элементов, обостряющих Эту нелинейность, например интерферометра Фабри—Перо. В таком случае появляется возможность модуляции света в И-сто фазовой ячейке, помещенной в интерферометр, а это снижает потери по отношению к амплитудной модуляции, реализуемой с помощью поляризационных элементов на основе изменения двулучепреломления или опшческой активноста модулирующей Среды.  [c.223]

Управление шириной линии. Помещая в основной резонатор дополнительные отражающие поверхности, можно отселектировать большинство аксиальных мод. Если между зеркалами резонатора поместить интерферометр Фабри — Перо, то это вызовет сильную амплитудную модуляцию близко расположенных друг к другу пиков отражения основного лазерного излучения, что в свою очередь будет препятствовать достижению порога генерации для большинства мод.  [c.281]

Наряду с классической схемой спектрометра Фабри-Перо в последнее время предложен ряд новых схем и методов, среди которых представляют интерес методы, использующие частотную или амплитудную модуляции [1601. Метод частотной модуляции основан на представлении светового потока, выходящего из интерферометра, как Суммы двух частей, одна из которых выражается преобрааованием Фурье спектра источника, а другая является постоянной величиной и не зависит от разности хода в интерферометре. Изменение разности хода приводит к изменению первой части светового потока. Нахождение преобразования Фурье этой функции по косинусу дает искомый спектр, т. е. распределение  [c.6]

Синхронизация мод лазера на АИГ Nd исследовалась Куи-зенгой и Сигманом, экспериментально подтвердившими многие выводы теории, данной в разд. 4.2 [4.6]. Для синхронизации мод лазера на АИГ Nd ими использовался электрооптический фазовый модулятор на кристалле LiNbOs с частотой модуляции 264 МГц. Ширина спектра излучения Av определялась с помощью интерферометра Фабри—Перо. Для измерения длительности импульсов Xl использовался быстродействующий фотодиод. Длительность более коротких импульсов определялась корреляционным методом на основе измерения второй гармоники (см. гл. 3). В зависимости от глубины модуляции Ьрм наблюдались импульсы длительностью от 40 до 200 пс при средней выходной мощности 300 мВт. Без принятия дополнительных мер кристалл модулятора выполнял роль эталона Фабри— Перо, ограничивавшего ширину спектра излучения лазера. Для сокращения длительности импульсов необходимо исключить селекцию мод модулятором, устранив мешающие отражения (для этого можно, например, скосить входные окна модулятора под углом Брюстера к оптической оси резонатора). Можно также наклонить модулятор на достаточно большой угол, устранив таким образом перекрытие падающего и отраженного пучков. Измерялась зависимость ширины спектра излучения и длительности импульсов от коэффициента глубины модуляции 8рм. Результаты измерений представлены на рис. 4.6. Проведенные через экспериментальные точки прямые подтверждают предска-10  [c.147]

Вместо рассмотренной в предыдущем разделе синхронизации мод при модуляции внутренних потерь или оптической длины резонатора синхронизация мод может осуществляться путем модуляции усиления. Для этого в резонатор лазера вводится накачка в виде непрерывной последовательности импульсов, генерируемых другим лазером с синхронизацией мод (см. рис. 5.8). Если длина резонатора лазера достаточно близка к длине резонатора лазера накачки или кратна ей, то при определенных условиях усиление оказывается модулированным с периодом, равным времени полного прохода резонатора. Как и при модуляции потерь, короткий импульс в этом случае формируется за промежуток времени, соответствующий максимальному усилению. Длительность этого импульса при оптимальных условиях может быть на два-три порядка короче длительности импульса накачки. Наибольший практический интерес представляет применение метода синхронной накачки в лазерах на красителях, так как в лазерах этого типа используется преимущественно оптическая накачка, а их линии усиления весьма широки (величина А(0з2/2л лежит в пределах от 10 до 10 Гц). Лазеры на красителях допускают в определенном диапазоне плавную перестройку частоты в области максимума спектра излучения. Это достигается введением в резонатор частотно-селек-тивного оптического фильтра, в качестве которого могут быть использованы, например, эталон Фабри—Перо, фильтр Лио или призма. Ширина спектра пропускания этих фильтров, однако, не должна быть слишком мала, так как ее сужение может вызвать существенное увеличение длительности импульсов. По указанным причинам значение лазеров на красителях с синхронной накачкой в технике генерации пикосекундных и субпи-косекундных импульсов в последние годы все больше возрастает. По сравнению с лазерами на красителях с пассивной синхронизацией мод, которым посвящена следующая глава, синхронно накачиваемые лазеры имеют следующее преимущество для перестройки частоты их излучения может быть использована полная спектральная ширина лазерного перехода, тогда как при пассивной синхронизации полоса перестройки дополнительно ограничивается спектром линии поглощения насыщающегося поглотителя.  [c.150]


В устройстве, показанном на рис. 5.9, частота излучения лазера непрерывно меняется настроечным элементом. Таким элементом может служить, например, фильтр Лио, эталон Фабри— Перо или интерференционный фильтр с клиновидными слоями. (Последний представляет собой четырехслойную диэлектрическую систему, в которой для некоторого направления толщина слоев меняется по линейному закону. Поэтому перемещение фильтра в этом направлении позволяет менять длину волны.) При применении призмы может быть использован резонатор V-образной формы. Применяя различные красители, можно при синхронной накачке лазера получать пикосекундные и субпико-секундные импульсы с возможностью плавной перестройки длины волны излучения оптическим фильтром в спектральном диапазоне примерно от 420 до 1000 нм. Особое внимание при этом следует обращать на относительно точную регулировку длины резонатора лазера на красителе и частоты следования импульсов лазера накачки. Это требует обеспечения высокой термической и механической стабильности лазерной системы. Следует подчеркнуть, что частота следования импульсов лазера накачки определяется частотой активного модулятора и может несколько отличаться от частоты прохода /(2L) соответствующего холодного резонатора (т. е. резонатора лазера без накачки активной среды). Поэтому необходимо подобрать длину резонатора лазера на красителе, согласовав ее с точностью порядка 10 с оптимальной частотой модуляции. Если не осуществляется постоянная подстройка частоты модуляции и длины резонатора лазера на красителе, то эти величины должны сохранять свои значения с точностью около Поэтому применяют высокочастотные генераторы с высокой стабильностью колебаний как по амплитуде, так и по фазе. Резонаторы монтируются на вибропоглощающих подставках и снабжаются стеклянными трубками, исключающими воздействие флуктуаций воздушных потоков. Осуществляется глубокая компенсация теплового расширения резонатора. Температура оптических элементов по возможности поддерживается постоянной, так чтобы изменение оптической длины не превышало 0,1 мкм. Для регулировки длины резонатора можно, например, поместить выходное зеркало резонатора лазера на красителе на микрометрический столик, позволяющий фиксировать изменение длины резонатора с точностью до 0,1 мкм.  [c.177]

Ири прпменепии интерферометра Фабри — Перо в схеме с с амплитудной модуляцией.. S, и  [c.11]

Оптическая бистабильность требует применения нелинейных материалов и оптической обратной связи. В тех устройствах модуляции света, где используют изменение показателя преломления, применяют нелинейные оптические среды, имеющие показатель преломления, зависящий от интенсивности света. Обратная связь является или внешней (макроскопической), где нелинейная среда размещается внутри интерферометра (резонатора) Фабри — Перо , или внутренней (микроскопической), где оптически индуцируемые изменения в нелинейной среде непосредственно влияют на взаимодействие среды с падающим пучком света. Большая часть работ по оптическим переключениям до сих пор выполнялась на устройствах, где для получения бистабильности использовались изменения рефрактивных свойств материалов, а обратная связь осуществлялась с помощью внеигаего резонатора Фабри — Перо. Примером реализации внутренней обратной связи является случай бистабильности, обусловленной возрастанием коэффициента поглощения. В устройствах типа СЭОУ (обсуждаемых ниже), хотя и используют рост коэффициента поглощения, но для воздействия на поглощение применяют извне подаваемое электрическое поле, так что здесь обратная связь является внешней. До сих пор все из наиболее перспективных устройств основывались на внешней обратной связи.  [c.53]

Впервые оптическая параметрическая генерация была полу- чена Джордмейном и Миллером [65], которые использовали в качестве источника накачки вторую гармонику лазера на Са 04 Н(1 с модуляцией добротности Яр = 0,529 мкм (фиг.7.1). Отражающие покрытия, которые образовывали резонатор для сигнальной и холостой волн, были напылены непосредственно на плоскопараллельные грани кристалла ниобата лития. Пропускание (1—Я) этих покрытий имело величину, меньшую 0,4%. Однако эффективные потери, определенные путем измерения добротности резонатора Фабри — Перо, образованного кристаллом, были около 20%. Причина различия была приписана поглощению в кристалле и рассеянию.  [c.194]

Авторы работы [108] создали более чувствительный лидар с дифференциальным поглощением (ИК-ДПР), работающий в ближнем инфракрасном спектральном диапазоне на длине волны 724,37 нм линии поглощения НгО. В этой лазерной установке применили лазер на рубине, работающий в режиме модуляции добротности, с энергией в импульсе 1,5 Дж для одновременного получения лазерного импульса с длиной волны 694,3 нм и лазерного импульса с длиной волны 724,37 нм. Такой режим работы достигли путем разделения луча на дйа с энергией в импульсе 0,25 и 1,25 Дж. Луч с энергией в импульсе 1,25 Дж использовали для накачки системы из двух ячеек с красителем, одна из которых служит генератором, другая — усилителем. Чтобы обеспечить возможность перестройки в интервале длин волн от 715 до 740 мм, применяли раствор DTD в диметил-сульфоксиде с концентрацией 1,2-10 М. Для получения узкополосной генерации использовали сочетание дифракционной решетки и интерферометра Фабри — Перо. В результате на выходе получали пучок с энергией в импульсе 0,165 Дж, длительностью импульса 30 не, шириной полосы генерации 0,008 нм и расходимостью менее 3,5 мрад.  [c.371]


Смотреть страницы где упоминается термин Фабри —Перо модуляция : [c.351]    [c.313]    [c.314]    [c.257]    [c.317]    [c.93]    [c.344]    [c.315]    [c.12]    [c.131]    [c.114]    [c.430]   
Основы оптики (2006) -- [ c.148 ]



ПОИСК



Модуляция

Перила

Перова

Рен (перо)

Фабри и Перо



© 2025 Mash-xxl.info Реклама на сайте