Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оптическая параметрическая генерация

В данном разделе мы рассмотрим некоторые эффекты, обусловленные нелинейным членом поляризации, который пропорционален квадрату электрического поля. Обсудим здесь два эффекта, а именно генерацию второй гармоники (ГВГ) и оптическую параметрическую генерацию (ОПГ). ГВГ имеет место, когда в нелинейном материале лазерный пучок с частотой ю частично преобразуется в когерентный пучок с частотой 2ш (этот  [c.491]

Оптическая параметрическая генерация представляет собой в действительности процесс, обратный генерации на суммарной  [c.501]


Оптическая параметрическая генерация  [c.286]

Это соотношение можно рассматривать как закон сохранения импульса фотонов. Параметрическая генерация света является аналогом параметрического усиления или параметрической генерации высокочастотных электромагнитных колебаний. В последнем случае термин параметрический процесс вводится по той причине, что речь идет о периодическом изменении одного из параметров колебательного контура, чаще всего его емкости. В результате такого воздействия имеет место усиление или генерация колебаний на определенных частотах. При оптическом параметрическом усилении или оптической параметрической генерации колебательный контур заменяется нелинейным оптическим кристаллом. Под воздействием интенсивной волны накачки диэлектрическая проницаемость среды меняется с частотой этой волны, что соответствует периодическому изменению емкости упомянутого выше колебательного контура. Параметрическое взаимодействие в оптическом диапазоне также представляет важные возможности практического применения.  [c.287]

Явления, связанные с обратимыми изменениями физических свойств среды под действием проходящего сквозь среду интенсивного света, называют нелинейно-оптическими. Выше мы говорили об изменении под действием света такой характеристики среды, как ее диэлектрическая восприимчивость. С этим связаны, в частности, явления генерации оптических гармоник, параметрического рассеяния света, параметрической генерации света — явления, прекрасно демонстрирующие нарушение принципа суперпозиции световых волн в среде (позднее мы поговорим о них подробнее). Нелинейно-оптические явления могут быть обусловлены изменением под действием света не только восприимчивости, но и других физических характеристик, например степени прозрачности (коэффициента поглощения) вещества.  [c.213]

С появлением лазера произошло второе (по сути дела, фактическое) рождение нелинейной оптики. Идеи Вавилова были развиты и воплощены в жизнь его учениками и последователями. Большой вклад в развитие нелинейной оптики внесли советские физики Р. В. Хохлов и С. А. Ахманов. Они установили в 1962 г. условия, при которых различные нелинейно-оптические явления (в частности, удвоение частоты света) должны протекать достаточно эффективно, выдвинули и обосновали идею параметрической генерации  [c.217]


В предыдущем разделе мы показали, что волна накачки с частотой 3 через взаимодействие в нелинейном кристалле может привести к одновременному усилению оптических волн с частотами со и oj, причем 3 = СО + oj. Если нелинейный кристалл поместить внутри оптического резонатора, который настроен в резонанс на частоте сигнальной или холостой волн (или на обеих частотах), то при некоторой пороговой интенсивности накачки параметрическое усиление будет вызывать одновременную генерацию на частотах как сигнальной, так и холостой волн. Пороговая интенсивность для этой генерации соответствует значению, при котором параметрическое усиление в точности компенсирует потери сигнальной и холостой волн [16—18]. Это является физической основой оптического параметрического генератора. Практическое значение такого генератора состоит в том, что он может преобразовывать выходную мощность лазера накачки в когерентное излучение на сигнальной и холостой частотах.  [c.574]

На рис. 12.7 представлен схематически оптический параметрический генератор на двойном резонансе, который резонирует как на сигнальной, так и на холостой моде (и обладает высоким Q). Пре-кде чем начать строгий анализ параметрической генерации, рассмотрим очень простую точку зрения, которая будет полезной для иллюстрации основной природы взаимодействия. Прежде всего  [c.574]

РИС. 12.7. Схематическое представление оптического параметрического генератора, в котором для накачки используется излучение лазера с частотой oij. Результирующее усиление вызывает в оптическом резонаторе, содержащем нелинейный кристалл и настроенном на частоты и oij, генерацию на частотах и оз (ш = Uj +  [c.574]

Такое значение интенсивности нетрудно получить даже в непрерывном режиме. Таким образом, этот пример иллюстрирует привлекательность оптического параметрического возбуждения колебаний как способа генерации когерентного оптического излучения на новых частотах.  [c.579]

Оптические параметрические генераторы наряду с лазерами на красителях являются наиболее важными источниками перестраиваемых по частоте ультракоротких световых импульсов. Под параметрическим усилением и генерацией понимают нарастание интенсивности или генерацию двух световых волн с частотами 0)2 и соз в определенной среде, облучаемой сильной световой волной, называемой волной накачки, с частотой соь Параметрическое взаимодействие следует рассматривать как процесс, обратный процессу смешения частот. Если исходное излучение является монохроматическим, то частоты усиливаемых и генерируемых волн со2 и соз связаны с частотой исходной волны oi соотношением  [c.286]

Сжатые состояния оптического параметрического осциллятора. На рис. 1.9 показана установка для сжатия флуктуаций вакуума. Она существенно использует нелинейную оптику и оптический параметрический осциллятор (ОПО), то есть, такое устройство, которое генерирует излучение с частотой 2ио из света с частотой ио. Это явление обычно называют генерацией второй гармоники.  [c.25]

Гейзенберга представление 81, 344 Генератор оптический параметрический 39, 349 Генерация гармоник 336  [c.509]

Тонкие диэлектрические пленки используются не только как пассивные элементы, предназначенные для передачи световых сигналов. Они применяются также как активные элементы (так называемые пленочные лазеры)-, кроме того, они используются для осуществления нелинейных взаимодействий световых волн — генерации оптических гармоник, параметрической генерации света, вынужденного комбинационного рассеяния света. В [73] отмечается, в частности, что использование тонкопленочных диэлектрических волноводов открывает путь к созданию миниатюрных лазерных устройств, оптических модуляторов, фильтров, параметрических генераторов и других элементов для систем связи с большой информационной емкостью, быстродействующих вычислительных устройств и для систем оптической обработки информации... Такая перспектива послужила основой для возникновения на стыке микроволновой техники и оптики новой области исследований — интегральной оптики .  [c.245]


За 20 лет существования нелинейной волоконной оптики были достигнуты большие успехи как в решении прикладных задач квантовой электроники, так и в изучении фундаментальных физических явлений. Такие нелинейные процессы, как параметрическое усиление, вынужденное комбинационное рассеяние и вынужденное рассеяние Мандельштама-Бриллюэна, успешно используются в создании и разработке волоконных лазеров, усилителей и преобразователей параметров излучения. В волоконных световодах изучаются сжатые состояния света, генерация и распространение оптических солитонов, явление фоточувствительности стекла.  [c.5]

Переходим к критериям отбора нелинейных оптических материалов, используемых в качестве рабочих тел устройств генерации второй гармоники, суммовых и разностных частот, а также плавного параметрического преобразования частоты излучения накачки. При прочих равных условиях основным требованием к кристаллу (текстуре) является наличие в нем направлений, по которым имеет место равенство скоростей распространения взаимодействующих излучений, так называемых направлений синхронизма. При отсутствии в среде направления синхронизма (вследствие не-  [c.238]

Высокие монохроматичность и направленность лазерного излучения играют принципиально важную роль для наблюдения когерентных нелинейных оптических эффектов, таких, как генерация оптических гармоник и параметрическое взаимодействие волн. Для них важны фазовые соотношения взаимодействующих волн и характерна возможность получения в определенных условиях пространственного накопления нелинейных эффектов по мере распространения света в среде. Когерентным эффектам уделено основное внимание в дальнейшем изложении.  [c.480]

При проведении экспериментов НЛО в оптических резонаторах принято использовать такие области пространства, в которых существуют особенно высокие значения напряженности поля возбуждающего излучения. Для этой цели могут применяться два метода. В первом из них используется резонатор для возбуждающего излучения (например, непосредственно лазерный резонатор). Второй метод основан на возможности применения резонаторов для выделения излучения с определенной частотой и с заданным направлением волнового вектора при помощи селективной обратной связи. Таким путем могут быть получены большие усиления или сильная генерация излучения высокой монохроматичности и резкой направленности (примеры параметрический генератор, комбинационный лазер). Возможна также соответствующая комбинация обоих методов. На фиг. 9 показаны некоторые часто применяемые схемы резонаторов.  [c.41]

Важные нелинейные эффекты на граничных поверхностях, такие как генерация гармоник, суммарных и разностных частот при отражении, наблюдались и были рассчитаны уже в начале 60-х годов [2, 5]. Были даны общие, формулы для нелинейного отражения и преломления на граничной поверхности между линейной изотропной и нелинейной анизотропной средами. В частности, для оптически одноосных кристаллов были сделаны численные оценки [4.-15]. Позднее были исследованы генерация гармоник, суммарных и разностных частот, а также и другие параметрические процессы (ср. разд. 3.14 и 3.15) в тонких слоях и в волноводах.  [c.485]

Впервые оптическая параметрическая генерация была полу- чена Джордмейном и Миллером [65], которые использовали в качестве источника накачки вторую гармонику лазера на Са 04 Н(1 с модуляцией добротности Яр = 0,529 мкм (фиг.7.1). Отражающие покрытия, которые образовывали резонатор для сигнальной и холостой волн, были напылены непосредственно на плоскопараллельные грани кристалла ниобата лития. Пропускание (1—Я) этих покрытий имело величину, меньшую 0,4%. Однако эффективные потери, определенные путем измерения добротности резонатора Фабри — Перо, образованного кристаллом, были около 20%. Причина различия была приписана поглощению в кристалле и рассеянию.  [c.194]

Параметрический генератор света. Поместив нелинейный кристалл в оптической резонатор, можно превратить параметрическое рассеяние в параметрическую генерацию света. Будем рассматривать скалярный синхронизм — когда волновые векторы (как волны накачки, так и обеих иереизлученных световых волн) направлены вдоль одной прямой эта прямая есть ось резонатора. Ориентируем нелинейный кристалл внутри резонатора таким образом, чтобы направление синхронизма для некоторой конкретной пары частот odj и — oj совпадало с осью резонатора, и введем в резонатор вдоль его оси интенсивную когерентную световую волну накачки частоты ш. Для выполнения условия синхронизма надо позаботиться о поляризации волны накачки. Возможна ситуация, когда волна накачки и одна из переизлученных волн — необыкновенные, а другая переизлученная волна — обыкновенная.  [c.236]

В общем случае в разложении поляризации по степеням поля необходимо учитывать также низкочастотные поля. Большинство нелинейных эффектов связано с членами ряда, пропорциональными квадрату и кубу амплитуды электрического поля. Квадратичная поляризация обусловливает существование таких эффектов, как генерация второй гармоники, оптическое выпрямление, линейный электрооптический эффект (эффект Поккельса) и параметрическая генерация. К эффектам, обязанным своим существованием поляризации, кубичиой по полю, откосятся геиерация третьей гармоники, квадратичный электрооптический эффект (эффект Керра), двухфотонное поглощение, вынужденное комбинационное рассеяние, вынужденное рассеяние Мандельштама — Бриллюэ-ка и вынужденное ралеевское рассеяние.  [c.860]


На практике применяются как однорезонаторные, так идвух-резонаторные оптические параметрические генераторы. Двухре-зонаторную параметрическую генерацию можно получить при накачке от непрерывных и импульсных лазеров. При этом оказалось, что в случае непрерывной накачки пороговые мош,ности составляют всего несколько милливатт. Но наличие резонанса сразу на двух частотах вызывает некоторую нестабильность излучения на выходе как по амплитуде, так и по частоте. Одно-резонаторная параметрическая генерация была осуществлена лишь при накачке от импульсных лазеров, поскольку в случае резонанса на одной частоте пороговая мош,ность накачки оказывается значительно более высокой (на два порядка величины).  [c.503]

На рис. 7.3 проведена классификация оптических явлений в диэлектриках, обусловленных самовоздействием интенсивных когерентных потоков света. В соответствии с соображениями, изложенными ранее, детальнее рассматриваются фактически используемые эффекты, обусловленные квадратичной нелинейностью, такие, как генерация второй гармоники, суммовых и разностных частот, включая визуализацию УФ- и ИК-излучений, и параметрическая генерация. Ввиду ограниченности объема предельно кратко излагаются данные о начинающих входить в инженерную практику эффектах, вызываемых кубичной нелинейностью, а также фоторефракцией. Вопросы лучевой прочности и лучевого пробоя не рассматриваются как существенно отличающиеся по характеру.  [c.196]

Параметрическая генерация света является одним из частных случаев плавного нелинейно-оптического преобразования спектра вынужденного излучения путем его вторичной генерации в резонаторе, содержащем соответствующую нелинейную среду [115—119]. К числу наиболее распространенных систем такого типа относятся комбинационные лазеры. Они генерируют излучение с частотами Vr = Vн + йvкoл, где v — частота излучения накачки Укол — частоты собственных колебаний среды, на которых происходит комбинационное рассеяние света k — целое число.  [c.246]

Как следует из табл. 7.24, метод параметрической генерации эффективно используется в технике плавного изменения частоты излучения основных практически эксплуатируемых твердотельных лазеров. Резервами метода являются новые нелинейные рабочие среды с большей оптической нелинейностью и лучшими теплофизическими характеристиками, чем существующие, задача изыскания которых и совершенствования технологии получения оптически совершенных монокристаллов продолжает оставаться высокоактуальной.  [c.247]

Схема знаменитого эксперимента по генерации сжатого света представлена на рис. 1.9. Здесь был использован процесс генерации субгармоник. Излучение кольцевого лазера с частотой 2ио служит накачкой для оптического параметрического осциллятора, связанного с резонатором. Нелинейная среда генерирует субгармоническое излучение, и из эезонатора выходит свет с частотой ио. Он смешивается с излучением той же частоты, которое было отражено светоделителем, обладаюш,им частотной селективностью, и не прошло через резонатор. Подвижное зеркало регулирует фазу этого поля. Так как это поле сильное, мы называем его локальным осциллятором.  [c.27]

ДЛЯ излучения на частотах соз и со/ поддерживаются малыми. Эта ситуация соответствует тому, о чем было рассказано в п. В1.111 по поводу усиления света и возникновения колебаний при достаточном усилении сигнальной и холостой волн потери могут быть компенсированы, так что возникает стабильная генерация. Благодаря эффекту максимального усиления при кр. = кз. + + А/. выделяется направление при заданном положении кристалла и (при учете дисперсионного соотношения для фотонов) создается селекция частот таким образом, путем вращения кристалла может достигаться генерация перестраиваемого когерентного излучения. Это имеет важное прикладное значение. С помощью описанного оптического параметрического генератора и путем изменения угла вращения и температуры кристалла Ь1КЬ0з была осуществлена перестройка длины волны почти от  [c.349]

В соответствии с данными рабО,т [155] и [153] девять исходных резонансных частот (17910, 48420, 19560, 21 150, 23970, 25 080, 27 960, 28 680 Гц) преобразуются в ходе процесса метаболизма в большую серию комбинациойных частот, представляющих собой вторую и третью гармоники этих частот, частоты колебаний, появляющихся в ходе оптического смещения и параметрической генерации. При этом в начале клеточного цикла наблюдаются только исходные частоты, а в ходе процесса метаболизма спектр, обогащается более высокочастотными линиями, что, по-видимому, связано с возрастанием со временем амплитуды генерируемых колебаний и соответственно увеличением амплитуды высших гармоник. Однако наиболее высокочастотные линии спектра, обязанные описанному преобразованию частоты, не превышают 9-10 ГГц (3000 см ), т. е. не доходят до оптического диапазона, самые низкочастотные линии которого лежат выше 4-105ГГц тем более они не доходят до области УФ-спектра, начинающегося с частоты 7,5-10 ГГц. Эффективное преобразование частоты в эти диапазоны на основе перечисленных выше принципов осуществить, по-видимому, невозможно.  [c.153]

Пример, = 1 И 1) либо только на частоте (Oi (однорезо-наторный генератор), либо на двух частотах (Oi и (02 (двухре-зонаторный генератор). Для пучка накачки зеркала являются достаточно прозрачными. Генерация возникает, когда усиление, обусловленное параметрическим эффектом, начнет превышать потери в оптическом резонаторе. Следовательно, для начала генерации нужна некоторая пороговая энергия входного пучка накачки. Когда этот порог достигнут, генерация наступает как на частоте (Oi, так и на (02, а конкретное сочетание величин oi и (02 определяется соотношениями (8.58). Например, при условии фазового синхронизма типа I, в котором участвуют необыкновенная волна с частотой (03 и обыкновенные волны с частотами (Oi и >2 (т. е. бщ,+ Omj), из соотношения (8.586) получаем  [c.503]

Нелинейный оптический отклик, характеризуемый параметрами djjf, и Xijhn приводит к многочисленным интересным явлениям и применениям. Нелинейность второго порядка Р. = Id-ji EjE, ответственна за генерацию второй гармоники [1] (удвоение частоты), за генерацию суммарной и разностной частот и за параметрическое усиление и генерацию. Член третьего порядка Р = фи-  [c.543]

Возможности таких волоконных световодов с низкими потерями привели не только к революции в области волоконно-оптической связи [14-17], но и к возникновению новой области науки-нелинейной волоконной оптики. Первые нелинейные явления (вынужденное комбинационное рассеяние и рассеяние Мандельштама-Бриллюэна) были экспериментально [18, 19] и теоретически [20] исследованы в одномодовых волоконных световодах еще в 1972 г. Эти работы стимулировали изучение других нелинейных явлений-оптически индуцированного двулучепреломления [21], параметрического четырехфотонного смешения [22, 23], фазовой самомодуляции [24, 25]. Важный результат был получен в 1973 г., когда было теоретически показано, что в оптических волокнах могут существовать солитоно-подобные импульсы, которые обусловлены совместным действием эффектов дисперсии и нелинейности [26]. Оптические солитоны позже наблюдались в эксперименте [27]. Их использование привело к большим успехам в области генерации и управления параметрами ультракоротких оптических импульсов [28-32]. В равной степени важное развитие получило использование оптических волокон для сжатия импульсов [33-36]. Были получены импульсы длительностью  [c.10]

Параметрические процессы третьего порядка обусловлены взаимодействием четырех оптических волн и включают в себя явления генерации третьей гармоники, четырехволнового смешения и параметрического усиления [1-5]. Четырехволновое смешение достаточно интенсивно исследовалось [6-29], поскольку это довольно эффективный способ генерации новых частот. Его основные свойства следуют из рассмотрения нелинейной поляризации третьего порядка  [c.282]


Для параметрического усиления и преобразования света, генерации оптических гармоник обычно используют нерезонансный электронный нелинейный отклик газов н кондеснроваиных сред. Время установления отклика t ., не превышает при этом 10 с. Увеличение интенсивности света, достигаемое при сни-хронизацин мод в лазере (фокусировка во времени) приводит к существенному повышению эффективности нелинейного взаимодействия волн.  [c.110]

Обратим внимание на оптическую схему генератора (рис. 5.10). Он работал при одном пучке накачки. Вьпие (п. 4.2.1) было показано, что такая генерация возможна лишь при наличии в среде нелокального нелинейного отклика. Следовательно, описанный генератор работал благодаря записи сдвинутых решеток при снятии вырождения по частотам взаимодействующих волн. В этом случае наряду с параметрическим четырех-пз овым энергообменом должен проявиться и двухпучковый энергообмен, который хорошо известен как вынужденное температурное рассеяние. Перекрытие одного из зеркал превращает схему из генератора с линейным резонатором в генератор с полуоткрытым резонатором (п. 4.2.2). Для такого резонатора характерен жесткий режим возбуждения и необходимо, чтобы отклик нелинейной среды был чисто нелокальным. В слз ие же тепловой нелинейности отклик среды всегда смешанный, так как сдвиг решетки относительно возбуждающей интерференционной картины не  [c.186]

В доступной форме и в то же время с полной математической строгостью в книге рассмотрены наиболее важные нелинейнооптические эффекты генерация высших гармоник и суммарных и разностных частот, оптический эффект Керра, самофокусировка и самоканали-зация световых лучей, вынужденное и обращенное комбинационное рассеяние, вынужденное рассеяние Брил-люэна, параметрическое усиление волн и многие другие. Большое достоинство книги заключается в том, что основные положения теории излагаются в непосредственной связи с соответствующими экспериментами, а описываемые эффекты иллюстрируются конкретными оптическими схемами и численными примерами.  [c.6]

В ГЛ. 3 С ПОМОЩЬЮ представленных в предыдущих главах физических и методических основных положений рассматриваются типичные процессы нелинейной оптики одно- и миогофотониое поглощение, процессы в лазерах, генерация гармоник, суммарных и разностных частот, параметрическое усиление, вынужденное рассеяние на оптических фоноиах и поляритонах. Обычный круг проблем, связанных с кратковременными процессами и с влиянием свойств ко-гереитиости в нелинейной оптике, представлен по возможности с единой точки зрения.  [c.10]

Мы уже установили выше, что квадратичная по полю нелинейная поляризация, описываемая нелинейной оптической восприимчивостью 2-го порядка ответственна за процессы генерации суммарной ((0 = 0 + С02) и разностной (со = oi - 02) частот, генерации второй оптической гармоники (со = 2 oi), оптического выпрямления (О - oi — 02). Эта же восприимчивость описывает линейный электрооптический эффект в постоянном поле, или эффект Поккельса (со = О + со), и процессы параметрического преобразования частоты (соз = oi + 02).  [c.201]


Смотреть страницы где упоминается термин Оптическая параметрическая генерация : [c.183]    [c.24]    [c.502]    [c.779]    [c.22]    [c.22]    [c.543]    [c.281]    [c.33]    [c.289]    [c.265]    [c.209]   
Смотреть главы в:

Лазеры сверхкоротких световых импульсов  -> Оптическая параметрическая генерация



ПОИСК



Генерация

Параметрическая генерация

Ряд параметрический



© 2025 Mash-xxl.info Реклама на сайте