Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Агенты

Тепловые трубы с самотечным возвратом конденсата известны давно. Широкое распространение тепловых труб с фитилями началось недавно в связи с необходимостью отвода больших тепловых потоков от мощных, но малогабаритных полупроводниковых устройств. Практически незаменимы тепловые трубы с фитилями в космосе. Для охлаждения механических, электрических или радиотехнических устройств в земных условиях мы очень широко используем естественную конвекцию. В космосе естественной конвекции не может быть, поскольку отсутствует сила тяжести, и нужны иные способы отвода теплоты. Тепловые трубы с фитилями могут работать и в невесомости. Они малогабаритны, не требуют затрат энергии на перекачку теплоносителей и при соответствующем подборе рабочего агента работают в широком интервале температур.  [c.105]


Воздух или пар высокого давления (обычно 0,4—0,8 МПа), вытекая из сопла со сверхзвуковой скоростью, подхватывает и интенсивно распыливает струйки предварите 1ьн<) подогретого iio 100— 140 °С мазута, подаваемого примерно под таким же, как и распыливающий агент, давлением, и выбрасывает образующийся туман в топку. Расход распыли-вающего агента составляет 0,5 -1 кг на 1 кг мазута.  [c.136]

Сравнение схем абсорбционной и компрессионной (см. рис. 23.10 и 23.8) холодильных установок показывает, что роль компрессора в абсорбционной установке выполняют кипятильник и абсорбер. Процесс поглощения в абсорбере соответствует всасыванию паров холодильного агента в компрессор, а выпаривание в кипятильнике — процессу сжатия и выталкивания агента из компрессора.  [c.201]

На рис. 23.12 приведена схема теплового насоса для отопления здания. Элементы схемы компрессор К, конденсатор КД, регулирующий вентиль РВ и испаритель И составляют обычную компрессионную холодильную установку. Испарение холодильного агента в испарителе происходит за счет теплоты, получаемой от холодной воды, и энергии, подводимой к компрессору.  [c.202]

Старению (деструкции) в большей или меньшей степени подвержены почти все органические и, в частности, полимерные материалы, битумы II др. Агентами, вызывающими деструкцию, являются механические нагрузки, тепло, свет, вода, кислород, озон, ультразвук, окислительные среды и др. Действие этих факторов сводится к разрыву основных цепей макромолекул или к  [c.358]

Полипропилен инертен в больщинстве химических агентов, обладает высокой стойкостью в кислотах (в том числе в концентрированной азотной и 90%-ной серной кислотах), не разрушается при действии растворов солей высокой концентрации даже при высоких температурах. Минеральные и растительные. масла на него практически не действуют. Ароматические углеводороды и хлоросодержащие соединения действуют на  [c.424]

В испарителе 1 холодильный агент — влажный пар, получая теплоту охлаждаемых тел, при постоянном давлении испаряется и в виде сухого пара подается в камеру смешения эжектора, и цикл повторяется. В пароэжекторной холодильной установке энергия затрачивается не в форме механической работы, а в форме теплоты. Холодильный коэффициент пароэжекторной холодильной установки определяется уравнением  [c.333]

Абсорбционная холодильная установка работает следующим образом. В парогенераторе 1 при подводе теплоты <7i холодильный агент выпаривается и в виде почти сухого насыщенного пара направляется в конденсатор 2, где полностью конденсируется, отдавая теплоту парообразования охлаждающей воде. Холодильный агент в виде жидкости дросселируется в регулирующем вентиле 3, при этом давление его уменьшается и температура жидкости падает до температуры более низкой, чем температура охлаждаемого помещения 4.  [c.334]


Получая теплоту Q2 от охлаждаемых тел, агент испаряется, превращаясь во влажный пар, и поступает.в абсорбер 5, где, отдавая теплоту абсорбции охлаждающей воде, полностью поглощается абсорбентом. При абсорбции агента абсорбентом раствор большой концентрации подается насосом 6 в парогенератор, где вследствие подводимой извне теплоты q агент выпаривается из раствора и направляется в конденсатор 2. Абсорбент со слабой концентрацией агента через дросселирующий вентиль 7, в котором давление и температура смеси падают, направляется в абсорбер 5. В абсорбере концентрация агента повышается, и он снова направляется насосом 6 в парогенератор 1.  [c.334]

Для абсорбционной установки подбирают растворы двух тел, полностью растворимых друг в друге и отличающихся разными температурами кипения. Жидкость с низкой температурой кипения используется как холодильный агент, а жидкость с высокой температурой кипения как абсорбент.  [c.334]

Другим примером конвертирования является перевод поршневых воздушных компрессоров на иной газ (аммиак, фреон). В это.м случае при-переделке необходимо учитывать различие физических и химических свойств рабочих агентов и соответственно выбирать материалы рабочих деталей.  [c.48]

Ситаллы являются превосходными диэлектриками и обладают высокой стойкостью против химических агентов, превосходя в этом отношении пластики, коррозионностойкую сталь и титановые сплавы. Они устойчивы против действия самых сильных щелочей и кислот (за исключением плавиковой).  [c.191]

В качестве холодильных агентов применяют воздух и жидкости о низкими температурами кипения, ам-  [c.261]

Расход холодильного агента  [c.263]

Основным недостатком воздуха как холодильного агента является его малая теплоемкость, а следовательно, и малое количество теплоты, отнимаемой от охлаждаемого тела одним килограммом агента. Вследствие этого, а также других причин воздушные холодильные установки в настоящее время не имеют широкого распространения,  [c.264]

Холодопроизводительность 1 кг холодильного агента  [c.266]

Количество холодильного агента и теоретическую мощность, подводимую к компрессору, определяют по формулам (268) и (271).  [c.267]

Для определения мощности двигателя холодильной машины необходимо знать количество холодильного агента (аммиака), всасываемого компрессором. Оно определяется из уравнения (268)  [c.274]

Количество холодильного агента (аммиака) 58,15  [c.274]

Пример 3. Расчет теплового состояния ЭМП с принудительным охлаждением часто затруднен из-за отсутствия достоверных сведений о динамике движения охлаждающего агента и количественных соотношениях между потоками теплопередачи внутри машины. Теоретический подход к расчету достаточно сложен и требует учета большого количества факторов, влияющих на нагревание отдельных элементов машины. Полученные теоретическим путем уравнения расчета являются в общем случае дифференциальными.  [c.99]

Насосом Н/ вода, служащая источником низкопотенциальной теплоты, подается в испаритель. В конденсаторе холодильный агент отдает часть своей теплоты воде из системы отопления СО. Циркуляция подогретой воды осуществляется насосом Н2. Промышленностью выпускается тепловой насос НТ-80, предназначенный для тепло-, хладо-и теплохладоснабжения различных объектов. В режиме теплоснабжения насос обеспечивает получение горячей воды с температурой 45—48 °С при температуре низкопотенциального теплоносителя не ниже 6 С в режиме хла-доснабжения — получение холода с температурой до —25°С при охлаждении конденсатора водой с температурой не  [c.202]

На базе уравнения (2.6), записанного для сферических частиц, т. е. при Ф=1, Горошко, Розенбаум и Тодес [16] предложили интерполяционную формулу, аппроксимирующую как предельные случаи ламинарного и турбулентного режимов течения ожижающего агента  [c.37]

Увеличение скорости фильтрации ожижающего агента приводит к расширению слоя. Причем если в слое мелких частиц некоторое расширение происходит еще до начала псевдоожижения, то слой крупных частиц начинает расширяться лишь после достижения критической скорости псевдоожижения. Общий вес слоя на единицу площади при этом остается постоянным  [c.49]

Повышение температуры в аппарате с псевдоожи-женным слоем двояко сказывается на интенсивности внешнего теплообмена. Во-первых, происходит изменение теплофизических свойств дисперсного материала и ожи-жающего агента. Соответствующие изменения гидродинамики и теплообмена описаны в гл. 2, 3. Во-вторых, усложняется механизм передачи энергии — существенным становится радиационный перенос, роль которого в низкотемпературных системах пренебрежимо- мала. Быстрое возрастание вклада излучения в процесс теплообмена объясняется характером зависимости количества переносимой энергии от температуры. В случае теплопроводности и конвекции перенос энергии между двумя элементами рассматриваемого объема пропорционален разности их температур приблизительно в первой степени (с учетом нелинейности). Перенос энергии излучением в тех же условиях будет пропорционален разности четвертых или пятых степеней (с учетом нелинейности) абсолютных температур [125].  [c.130]


Характер зависимости an = f(P) и наличие максимума Оп При определенном условии нетрудно также объяснить [Л. 99] в соответствии с теорией теплообмена псевдоожиженного слоя, изложенной в [Л. 130, 138, 220] (см. рис. 8-7). Это условие заключается в том, что увеличение концентрации в проточной системе должно происходить лишь за счет уменьшения расхода (скорости) газа. Подобная жесткая связь концентрации и скорости характерна для кипящего (несквозного) дисперсного потока. Для сквозных потоков, особенно для га зовзвеси, такая связь необязательна концентрация может увеличиваться при одновременном повышении расхода транс-пор тирующего агента за счет превалирующего роста подачи твердого компонента. В исследованиях кипящего слоя изучается левая ветвь кривой рис. 8-7. При этом рассматривается влияние скорости v, являющейся в этом 256  [c.256]

Образующиеся в условиях переработки сернистых нефтей при высоких температурах крекинг-процесса сернистые соединения, элементарная сера, меркаптаны и др. являются весьма коррозионно-активными веществами. Основным агентом высокотемпературной коррозии является сероводород. Сернистый газ при шлеокнх температурах менее опасен, чем сероводород. Сухой сероводород при комнатной температуре также ие представляет опасности д, я обычных углеродистых сталей даже в присутствии кислорода, но он способен взаимодействовать с медью согласно следующей реакции  [c.154]

В Советском Союзе (во ВНИИСКе) разработан метод получения порошкообразного тиокола н запгитных покрытий на его основе. Напылению подвергается порошковая смесь, содержащая, кроме тиокола, двуокись свинца (вулканизующий агент) и ацетанилид (ускоритель вулканизации). Перед нанесением покрытия поверхность изделия подвергают пескоструйной обработке н подогревают до 100—120° С. После вулканизации образуется непроницаемое резиновое покрытие, обладающее хорошей адгезией к металлической поверхности (адгезия к стали порядка 1,3—1,5 Мн1м ). Установлено, что покрытия из напыленного отечественного тиокола при толщине 0,5 мм непроницаемы для. в(,-ды н многих электролитов, не обладающих окислительными свойствами. Обычно изделия защищают более толстым покрытием— толщиной 1—3 мм.  [c.446]

Непревзойденными по химической стойкости в широком ди,а-пазоне температур являются фтор-каучуки. Резиновые изделия и защитные обкладки на их основе можно эксилуатировать в сильно агрессивных агентах и окислителях до 150° С. Однако  [c.448]

Химическая стойкость резин в первуо очередь определяется видом каучука, его строением, наполнителем, вулканизующими агентами и другими факторами. Подавляющее большинство резин стойки в растворах щелочей и кислот, главным образом,разбавленных, в растворах солеи, а некоторые из них и в отдельных органических растворителях аслах, бензинах, алифатических углеводородах, спиртах. Химически стойкие резины на основе бутилкаучука, наирита, фторкаучуков, этилен-пропи-леновых и других каучуков обладает повышенной по сравнению с остальными резинами химической стойкостью.  [c.69]

В 1824 г. Сади Карно, французский инженер и ученый, и своих рассуждениях о движущей силе огня изложил сущность ьторого закона. Он писал Повсюду, где имеется разность температур, может происходить возникновение движущей силы. Движущая сила тепла не зависит от агентов, взятых для ее развития ее количество исключительно определяется температурой тел, между которыми, в конечном счете, производится перенос теплорода. Температура газа должна быть первоначально как можно выше, чтобы получить значительное развитие движущей силы. По той же причине охлаждение должно быть как можно больше. Нельзя надеяться, хотя бы когда-нибудь, практически использовать всю движущую силу топлива .  [c.108]

Температура кипения бинарного раствора при данном давлении зависит от концентрации раствора. Свойства бинарных систем показывают на так называемых диаграммах состояния, где по оси абсцисс откладывают концентрацию холодильного агента С, а по оси ординат — давление р или температуру t (рис. 21-7). Начало координат (точка О) соответствует температуре кипения, чистого вещества абсорбента — точка А ( i = 1 С2 = 0), а температуре чистого вещества холодильного агента —точка В (С2 = 1 i = == 0 l 4- С2 = 1). Кривая АаВ представляет собой состояние жидкой фазы или линию кипящего раствора при данном давлении, а кривая ЛЬВ — линию концентрации (сухого пасьнцепного пара) или линию газообразной фазы при равнопеспом сосуществовании обеих фаз.  [c.334]

Наибольшее распространение для охлаждения тел до температуры —20° С иолучили холодильные установки, в которых холодильным агентом являются легкокииящие жидкости — аммиак, фреоны, сернистый ангидрид и другие ири невысоких давлениях (желательно близких к атмосферному).  [c.336]

Наилучшим решением является применение коррозионно-стойких ма-териалов (нержавеющих сталей, титановых сплавов). Металлонагруженные детали, соприкасающиеся с химически активными агентами, целесообразно изготовлять из химически стойких пластиков (полиолефины, фторопласты).  [c.33]

Рассматривая неустойчивость потоков в вихревой трубе, авторы работ [95, 96] предлагают модель, в которой агентами энергопереноса являются КВС, причем при анализе для удобства авторы оперируют с тороидальной формой. Согласно предлагаемой модели, КВС в результате взаимодействия друг с другом и с основным потоком перемещаются к центру или к периферии. В первом случае они расширяются, теряют устойчивость, замедляют вращение и передают механическую энергию ядру, обеспечивая тем самым его квазитвердую закрутку, во втором случае, увеличиваясь по радиусу, сжимаются и диссипируют вследствие работы сил вязкости. Процессы увеличения или уменьшения размера вихрей относятся к процессам деформационного характера. В этом смысле рассматриваемая деформация симметрична. При несимметричной деформации одна часть тора претерпевает сжатие, а диаметрально противоположная — расширение. Если учесть, что в вихревом тороиде низкоэнергетические массы газа располагаются по его оси [67], то должно происходить их смещение вдоль криволинейной оси тороида в центр вихревой трубы с последующим их перемещением в приосевую зону вынужденного вихря, и уходом разогретой оболочки на периферию.  [c.125]



Смотреть страницы где упоминается термин Агенты : [c.14]    [c.353]    [c.361]    [c.445]    [c.66]    [c.329]    [c.330]    [c.330]    [c.333]    [c.333]    [c.335]    [c.271]    [c.274]    [c.263]    [c.306]    [c.15]    [c.311]   
Катодная защита от коррозии (1984) -- [ c.46 ]



ПОИСК



Агенты армирующие

Агенты вулканизации

Агенты флотационные

Агенты холодильные —

Влагосодержание сушильного агента

Влияние добавочных агентов

Вулканизующие агенты

Вулканизующие агенты резиновой смеси

Выравнивающая способность агенты

Данилова. Теплоотдача при кипении холодильных агентов

Динамическая вязкость и теплопроводность перегретых паров холодильных агентов прир105 Па

Диспетчеризация процессов и агентов в распределенных системах поддержки принятия решений

Другие физические свойства рабочих агентов турбоагрегатов

Изучение реальных процессов расширения и сжатия рабочего агента в данной стадии

Испытания в атмосфере с постоянной влажностью в присутствии коррозионно активных агентов

Классификация материалов, подвергаемых сушке сушильных установок и сушильных агентов

Классификация сушимых материалов, сушильных установок и сушильных агентов

Комплексообразующие агенты

Конструкции и характеристики форсунок с распиливающим агентом (Л. В. Кулагин)

Коррозионно-активные агенты загрязнения воздуха, I почвы и воды

Коррозионные агенты, выявлени

Коррозионные агенты, выявлени устранение

Натрия конвертирующий агент

Не путайте с красками (окрашивающие агенты)

Нормальная температура холодильного агент

Общие свойства холодильных агентов

Основные сведения о некоторых холодильных агентах

Основные схемы охлаждения рабочих лопаток газовых турбин — Водяной пар как агент для охлаждения проточной части турбины

Охлаждение охватываемой детали при сборке — Область применения — Охлаждающие агенты — Оборудование

Природные окрашивающие агенты

Рабочие агенты абсорбционных установок

Рабочие агенты газовых холодильных установок

Рабочие агенты паровых холодильных установок

Рабочие агенты тепловых насосо

Рабочие агенты тепловых холодильных установок

Рабочий агент

Распределение выравнивающие агенты

Расширение и сжатие рабочего агента. Разбивка этих процессов на стадии

Резина вулканизующие агенты

Свойства фталевого ангидрида как промывочного агента

Связывание коррозионных агентов (присадки)

Синтетические окрашивающие агенты

Сушильные агенты

Сушильный агент систем пылеприготовления

Сушильный агент систем пылеприготовлення

Температура сушильного агента

Тепло- и массообмен влажных материалов с сушильным агентом

Тепло- и массообмен между частицами и псевдоожижающим агентом или слоем в целом

Теплоносители и охлаждающие агенты

Теплопроводность, кинематическая вязкость и число Прандтля перегретых паров некоторых холодильных агентов

Теплофизические свойства холодильных агентов

Термодинамические свойства холодильных агентов

Учет физических свойств рабочего агента при составлении энтропийной диаграммы

Физические свойства некоторых холодильных агентов на линии насыщения

ХОЛОДИЛЬНЫЕ АГЕНТЫ И ТЕПЛОНОСИТЕЛИ (дои,., канд. техн наук Б. С. Вейнберг)

Холодильные агенты автоматизированные

Холодильные агенты домашние

Холодильные агенты и их характеристики

Холодильные агенты каскадные

Холодильные агенты компрессионные

Холодильные агенты коэффициент трансформаци

Холодильные агенты многоступенчатые

Холодильные агенты пароэжекторные

Холодильные агенты теплонасосные

Холодильные агенты термохимические

Холодильные агенты трехступенчатые

Холодильные агенты эжекторные

Холодильные агенты энергетическая оценка

Холодильные агенты — Показатель адиабаты

Холодильные агенты, воспламеняющиеся в смеси е воздухом



© 2025 Mash-xxl.info Реклама на сайте