Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рабочие агенты паровых холодильных установок

Теоретический цикл пароэжекторной холодильной установки на Г—5-диаграмме изображается следующим образом (рис. 9.4,6). Линия 1—2 соответствует испарению хладоагента в испарителе, линия 3—4 — процессу адиабатного расширения рабочего пара в сопле эжектора. Параметры паровой смеси после смешения рабочего пара (точка 4) н пара холодильного агента (точка 2) определяются точкой 5, а линия 5—6 соответствует повышению давления смеси паров в диффузоре. Отвод теплоты и конденсация паровой смеси в конденсаторе изображены линией 6—7. Линия 7—1 соответствует дросселированию холодильного агента в редукционном вентиле. Для части конденсата хладоагента, поступившего в парогенератор, линии 7- 8 и 8—3 соответствуют нагреву жидкости до температуры кипения и превращения ее в пар.  [c.226]


Этот коэффициент характеризует степень необратимости рабочего цикла холодильной установки и является мерой ее термодинамического совершенства. Из двух холодильных установок, работающих в одном и том же интервале температур, более совершенной является та, у которой коэффициент использования тепла больше. Преимуществом пароэжекторной установки является отсутствие громоздкого и дорогостоящего парового компрессора, а кроме того, возможность использования весьма низкого давления рг без значительного увеличения габаритов установки. Это дает возможность применения в качестве холодильного агента воды. В пароэжекторной установке, работающей на водяном паре, без особых затруднений удается достигнуть температуры 0°С, при которой давление рг составляет всего 0,006108 бар, а удельный объем сухого насыщенного пара равен 206,3 м 1кг. При таких параметрах ни турбокомпрессор, ни тем более поршневой компрессор использовать невозможно.  [c.252]

Принцип действия парового эжектора заключается в следующем (фиг. 185). Рабочий пар, имеющий давление выше атмосферного, поступает в сопло, где, расширяясь до очень низкого давления, приобретает большую скорость. Вытекающая из сопла струя попадает в камеру смешения. Поскольку давление в камере смешения определяется конечным давлением пара, вытекающим из сопла, оно также будет очень низкое. Вследствие этого в смесительную камеру из системы холодильной установки подсасывается холодильный агент, который и смешивается с потоком вытекающего из сопла пара. Скорость потока при этом несколько снижается, но остается  [c.293]

Затрата энергии для получения холода может производиться либо в виде механической (компрессионные установки), либо в виде тепловой (пароэжекторные и абсорбционные). В зависимости от рода рабочего вещества компрессионные установки делятся на воздушные и паровые. В последних применяются вещества (холодильные агенты) с низкой температурой кипения (аммиак, углекислота, фреон и др.).  [c.94]

Промышленное получение холода было впервые осуществлено нри помощи воздушной компрессионной машины, но у воздушных холодильных установок, вследствие малой теплоемкости воздуха, удельная холодопроизводительность весьма мала, что вызывает необходимость использования большого объема циркуляционного юздуха. Это приводит к недопустимому увеличению размеров холодильной установки, поэтому воздушные холодильные установки значительной производительности в настоящее время не строятся. В качестве холодильных агентов в паровых компрессорных холодильных установках применяют такие рабочие тела, которые в жидком состоянии имеют небольшую теплоемкость, достаточно высокую критическую температуру и бшьшую величину скрытой теплоты парообразования.  [c.433]


Для получения неглубокого холода наибольшее распространение получили паровые компрессионные установки. Схема такой установки приведена на рис, 10.8, а ее цикл в координатах Т — на рис. 10.9. В качестве рабочего тела в таких установках используются низко-кипящие жидкости такие, как аммиак, фреон и др. Холодильная установка состоит из холодильной камеры I (см. рис. 10.8), где должна быть температура ниже температуры окружающей среды, компрессора II, испарителя III, конденсатора IV и регулирующего (дроссельного) вентиля V. Работает установка следующим образом. Компрессор II засасывает из испарителя III при постоянном давлении р = onst холодильный агент в виде влажного или сухого пара при давлении, выше атмосферного и отрицательной температуре (точка 1, рис. 10.9), и сжимает его по адиабате 1 — 2 до более высокого  [c.124]


Смотреть страницы где упоминается термин Рабочие агенты паровых холодильных установок : [c.329]    [c.251]   
Теплотехнический справочник том 1 издание 2 (1975) -- [ c.414 , c.415 ]



ПОИСК



Агенты

Агенты холодильные —

Паровая установка

Рабочий агент

Холодильная установка

Холодильная установка паровая



© 2025 Mash-xxl.info Реклама на сайте