Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Критическая температура магнитного перехода значения

Переход сверхпроводников из нормального состояния (характеризующегося определенным значением удельного сопротивления) в сверхпроводящее происходит при охлаждении этого сверхпроводника ниже определенной температуры, которая носит название критической температуры сверхпроводника Т . Для разных сверхпроводников критическая температура имеет различные значения. Если на сверхпроводник, находящийся в сверхпроводящем состоянии (т е. при Т < Т ), наложить достаточно сильное внешнее магнитное поле, то сверхпроводимость разрушится, т.е. магнитное поле проникнет внутрь сверхпроводника и он перейдет в нормальное состояние. При этом оказывается, что чем ниже температура, до которой охлажден сверхпроводник, тем большее внешнее магнитное поле потребуется для того, чтобы разрушить сверхпроводимость. Магнитное поле, при котором происходит разрушение сверхпроводимости, называется критическим магнитным полем с напряженностью  [c.161]


Во-первых, возможен метод адиабатического намагничивания сверхпроводников [21, 221. Энтропия сверхпроводящего метал.та при температуре ниже точки перехода в нормальном состоянии выше, чем его энтропия в сверхпроводящем состоянии. Следовательно, при изотермическом наложении магнитного поля и при переходе этого поля через критическое значение энтропия скачком возрастает. Если наложение поля производится адиабатически, температура падает до значения, при котором величина энтропии в нормальном состоянии равна ее величине в сверхпроводящем состоянии при исходной температуре.  [c.429]

Критическим полем называется такое значение напряженности магнитного поля Не, при котором при данной температуре совершается переход вещества в нормальное состояние. Напряженность критического поля увеличивается с уменьшением температуры и приближенно описывается уравнением  [c.220]

Переход из нормального состояния в сверхпроводящее является обратимым и происходит как фазовое превращение 2-го рода, сопровождающееся скачком теплоемкости. Ниже критической температуры сверхпроводящее состояние может быть разрушено наложением магнитного поля не меньше некоторого критического значения Як, величина которого зависит от температуры,  [c.301]

Наибольшее возможное значение температуры перехода (критическая температура перехода) данного сверхпроводникового материала достигается лишь при ничтожно малой магнитной индукции, т. е. в случае сверхпроводникового электромагнита при весьма малой силе тока, идущего через обмотку этого электромагнита. Наибольшее возможное значение магнитной индукции перехода В рд (критическая магнитная индукция) также соответствует температуре сверхпроводника, лишь ничтожно отличающейся от абсолютного нуля (в табл. 3.1 приведены соответствующие критические значения параметров сверх-  [c.26]

Обзор магнитных и калориметрических данных для сверхпроводящих элементов с подробным обсуждением результатов для каждого алемента. Имеется сводная таблица, содержащая данные о кристаллической структуре, температуре перехода, критическом поле при абсолютном пуле и калориметрических и магнитных значениях -f.  [c.373]

Вообще перспективными,с точки зрения практического использования, можно считать только те сверхпроводники, которые имеют высокие значения обеих критических величин - температуры и магнитной индукции. Такими свойствами обладают только сверхпроводники 2 рода (см. табл. 2.1), что дало возможность применять эти материалы как для производства сверхпроводниковых электромагнитов, создающих сильные магнитные поля, так и для других практических целей создания электрических машин, трансформаторов и других устройств малых массы и габаритов и с высоким к. п. д. кабельных линий для передачи весьма больших мощностей на произвольно большие расстояния волноводов с особо малым затуханием накопителей энергии и пр. Ряд устройств памяти и управления основывается на переходе сверхпроводника в сверхпроводящее или нормальное состояние при изменении магнитной индукции (или соответственно тока) или температуры.  [c.25]


При низких температурах некоторые металлы становятся сверхпроводящими. В этом состоянии они обладают замечательным свойством (эффект Мейсснера), заключающимся в том, что Внешнее магнитное ноле не проникает внутрь металла (5=0 даже при Н Ф 0). Однако, когда внешнее магнитное поле становится больше определенного критического значения Т), сверхпроводящее состояние разрушается и переходит в нормальное, так что В становится равным Н (при Н > Не имеем В = Я). На фиг. 86 приведена кривая зависимости критического магнитного ноля Не (Т) от Т. Она делит плоскость Н — Т на две части, соответ-  [c.245]

Индуцированные магнитные превращения происходят в магнетике при постоянных температуре и составе при наложении внешнего магнитного поля или давления (обычно при одноосном сжатии). Превращение происходит при достижении некоторого критического значения напряженности магнитного поля и сопровождается изменением магнитной симметрии - изменением ориентации векторного параметра упорядочения или его типа. Индуцированные магнитные превращения также могут быть фазовыми переходами 1-го и 2-го рода. Они, в частности, имеют место в РЗМ-ферритах.  [c.85]

Сверхпроводники II рода обладают сверхпроводящими электрическими свойствами вплоть до поля Нс2- Между нижним критическим полем Нс1 и верхним критическим полем Нсг плотность потока В ф О и эффект Мейснера является неполным. Значение Яс2 может более чем в 100 раз превышать значение критического поля Яс, к которому мы приходим при термодинамическом подходе к рассмотрению перехода в сверхпроводящее состояние в нулевом магнитном поле. В области напряженностей полей между Нс и Яс2 линии потока пронизывают сверхпроводник и он находится в вихревом состоянии (см. ниже рис. 12.36). Для сплава Nb, Al и Ge при температуре кипения жидкого гелия (см. рис. 12.7) было достигнуто ) поле Нс2 =  [c.426]

Эта модель (см., например, [9.103]) имеет довольно длинную историю. Уже давно было понято [1, 2], что критическая температура фазового перехода, (р), должна монотонно падать с уменьшением концентрации магнитных атомов р, так что фактически значение (р) должно обращ,аться в нуль при некотором конечном значении р, последнее сущ,ественно зависит от топологии окружающ,ей решетки. Действительно, совершенно очевидно [3], что это есть просто критическая величина концентрации  [c.542]

Сверхпроводящий переход, наблюдаемый по сопротивлению проволоки, расположенной вдоль направления поля, может быть использован для измерения величины критического поля. Однако такой способ, который практически вполне применим к олову и многим другим сверхпроводникам, в случае некоторых элементов и многих сплавов может привести к ошибочным результатам. Это объясняется тем, что в образце может возникнуть несколько тонких сверхпроводящих нитей, расположепных параллельно областям нормальной фазы, в результате чего измеренные значения критической температуры и критического поля будут выше, чем у сплошного образца. Имея в виду это обстоятельство, можно сказать, что для определения критических значений температуры и поля предпочтительнее производить магнитные измерения, характеризующие свойства всего объема образца в целом.  [c.630]

Сверхпроводники и криопроводники. Явление сверхпроводимости было открыто нидерландским физиком X. Камерлинг-Оннесом в 1911 г. Согласно современной теории, основные положения которой были развиты в работах Д. Бардина, Л. Купера, Дж. Шриф-фера (теория БКШ), явление сверхпроводимости металлов можно объяснить следующим образом. При температурах, близких к абсолютному нулю, меняется характер взаимодействия электронов между собой и атомной решеткой, так что становится возможным притягивание одноименно заряженных электронов и образование так называемых электронных (куперовских) пар. Поскольку куперовские пары в состоянии сверхпроводимости обладают большой энергией связи, обмена энергетическими импульсами между ними и решеткой не наблюдается. При этом сопротивление металла становится практически равным нулю. С увеличением температуры некоторая часть электронов термически возбуждается и переходит в одиночное состояние, характерное для обычных металлов. При достижении критической температуры (Т ) все куперовские пары распадаются и состояние сверхпроводимости исчезает. Аналогичный результат наблюдается при определенном значении магнитного поля (критической напряженности Я р или критической индукции Акр), которое может быть создано как собственным током, так и посторонними источниками. Критическая температура и критическаяс напряженность магнитного поля являются взаимосвязанными величинами. Эта зависимость для чистых металлов может быЪ приближенно представлена следующим выражением  [c.122]


Явление сверхпроводимости связано с тем, что электрический ток, однажды наведенный в сверхпроводящем контуре, будет длительно (годами) циркулировать по этому контуру без заметного уменьшения своей силы, и притом без всякого подвода энергии извне (конечно, если не учитывать,неизбежного расхода энергии на работу охлаждающего устройства, которое должно поддер живать температуру сверхпроводящего контура ниже значения Т , характерного для данного сверхпроводникового материала) такой сверхпроводящий контур создает в окружающем пространстве магнитное поле, подобно постоянному магниту. Поэтому обтекаемый электрическим током сверхпроводящий соленоид должен представлять собой сверхпроводниковый электромагнит, не требующий питания от источника тока. Однако первоначальные попытки изготовить практически пригодный сверхпроводниковый электромагнит, создающий в окружающем пространстве магнитное поле с достаточно высокими напряженностью Я и магнитной индукцией В, закончились неудачей. Оказалось, что сверхпроводимость нарушается не только при повышении температуры до значений, превышающих Т , но и при возникновении на поверхности сверхпроводника магнитного поля с магнитной индукцией, превьш1ающей индукцию перехода (в первом приблил<ении, по крайней мере для чистых сверхпроводни-ковых металлов, безразлично, создается ли индукция током, идущим по самому сверхпроводнику, или же сторонним источником магнитного поля). Это поясняется диаграммой состояния сверхпроводника, изображенной на рис. 47 Каждому значению температуры Т данного материала, находящегося в сверхпроводящем состоянии, соответствует свое значение индукции) перехода В . Наибольшая возможная температура перехода Гсо (критическая температура) данного сверхпроводникового материала достигается  [c.206]

Из всех чистых металлов, способных переходить в сверхпроводящее состояние, наивысщую критическую температуру перехода имеет ниобий (7кр = 9,2 К). Однако для ниобия характерны низкие значения критического магнитного поля (около 0,24 Тл), что недостаточно для его широкого применения. Хорошим сочетанием критических параметров и отличаются сплавы и интерметаллические соединения ниобия с цирконием, титаном, оловом и германием. В табл. 23.1 приведены критические параметры сверхпроводников, представляющих практический интерес.  [c.828]

Твердые сверхпроводники представляют собой не чистые металлы, а сплавы или химические соединения. Некоторые из твердых сверхпроводников обладают не только сравнительно высокими значениями критической температуры перехода Т ро, но и относительно высокими значениями критической магнитной индукции Б ро (см. табл. 3.1), что дало возможность применять эти материалы как для производства сверхпроводниковых электромагнитов, создающих сильные магнитные поля, так и для других практических целей (см. далее).  [c.27]

Таким образом, температурная зависимость описывает изменение хаотичности магнитной системы или сплава. При очень высоких температурах, когда стремится к нулю, рассматриваемый ансамбль совершенно неупорядочен. При понижении температуры возникает ближний порядок (в пределах одной-двух постоянных решетки). При более низких температурах величина становится очень большой и описывает критические флуктуации спина или концентрации. Температура, при которой длина обращается в бесконечность, соответствует установлению дальнего порядка — это есть критическая температура перехода порядок — беспорядок Гс (в ферромагнетике это температура Кюри, в антиферромагнетике — температура Нееля). При температурах ниже Гс предельное значение Гоо [см. формулу (1.34)] оказывается отличным от нуля, и система находится в упорядоченном состоянии.  [c.41]

Для Ф. п. II рода характерно отсутствие скачков плотности в-ва, концентрации компонентов, теплоты перехода. Но точно такая же картина наблюдается и в критич. точке на кривой Ф. п. I рода (см. Критические явления). Сходство оказывается очень глубоким. Ок. критич. точки состояние в-ва можно характеризовать величиной, играющей роль параметра порядка. Напр., в случае критич. точки на кривой равновесия жидкость—пар — это отклонение плотности от ср. значения. При движении по критич. изохоре со стороны высоких темп-р газ однороден, и отклонение плотности от среднего значения равно нулю. Ниже критической температуры в-во расслаивается на две фазы, в каждой из к-рых отклонение плотности от критической не равно нулю. Поскольку вблизи точки Ф. п. II рода фазы мало отличаются друг от друга, возмояшо образование зародышей большого размера одной фазы в другой фазе [флуктуация), точно так же, как вблизи критич. точки. С этим связаны многие критич. явления при Ф. п. II рода бесконечный рост магнитной восприимчивости ферромагнетиков и диэлектрической во с приимчивос ти сегнетоэлектриков (аналогом явл. рост сжимаемости вблизи критич. точки жидкость—пар), бесконечный рост теплоёмкости, аномальное рассеяние эл.-магн. волн [световых в системе жидкость—пар (см. Опалесценция критическая), рентгеновских в ТВ. телах], нейтронов в ферромагнетиках. Существенно меняются и динамич. явления, что связано с очень медленным рассасыванием образовавшихся флуктуаций. Напр., вблизи критич. точки жидкость—пар сужается линия рэлеевского рассеяния света, вблизи Кюри точки ферромагнетиков и Нееля точки антиферромагнетиков замедляется спиновая диффузия (происходящее по законам диффузии распространение избыточной намагниченности) и т. д. Ср. размер флуктуаций (радиус корреляций) Я растёт по мере приближения к точке Ф. п. II рода и становится в этой точке бесконечно большим.  [c.801]

Наблюдаемую зависимость ширины сверхпроводящего перехода от величины измерительного тока качественно можно объяснить появлением промежуточного состояния, вызванного магнитным полем тока. При температурах ниже точки перехода сверхпроводящее состояние будет существовать только до тех пор, пока ток в образце не превышает некоторого критического значения. Это явление носит название эффекта Сильсби [199] оно является следствием действия магнитного поля тока. Отметим, что критическое значение тока непосредственно связано с величиной критического поля [213].  [c.615]


Таким образом, о гекаемый электрическим током сверхпроводящий соленоид должен представлять собой сверхпроводниковый электромагнит , не требующий питания током. Однако оказалось, что сверхпроводимость нарушается не только при повышении температуры свыше температуры перехода Ткр, но также и при возникновении на поверхности сверхпроводника магнитного поля со значением магнитной индукции выше некоторого критического значения Вкр. Это объясняется диаграммой состояния сверхпроводника, схематически изображенной на рис. 2.8(а). Каждому значению температуры данного материала, находящегося в сверхпроводящем состоянии, соответствует свое значение Вкр. Зависимость Вкр от температуры во многих случаях описывается формулой  [c.22]

При уменьшении размера ферромагнитной частицы ниже критического (величина критического размера зависит от температуры, константы магнитной анизотропии материала и величины приложенного поля) в результате тепловых флуктуаций векторов намагничивания спинов частица ведет себя парамагнитно. Подобное явление наблюдается в разбавленных растворах. Так, например, в системе Hg—Fe (1—2%) Fe содержится в дисперсной форме. После приготовления сплав имеет низкую коэрцитивную силу, а после старения в течение нескольких часов коэрцитивная сила достигает 79,6-10 а/м (1000 э) при повышении Не возрастает и J,. Вначале составляет 55% намагниченности для чистого железа, а когда = = 398-10 а/м (500 э) достигает максимального значения. Температура Кюри в исходном состоянии низкая. Эти данные объясняются, как результат постепенного перехода частиц железа из так называемого суперпарамаг-нитного состояния в ферромагнитное. Результаты исследования железных амальгам в температурном интервале 4—200 К подтвердили, что при определенных размерах частицы ведут себя парамагнитно. Но этот парамагнетизм отличается от обычного парамагнетизма простых металлов. У простых металлов проявляется парамагнетизм отдельных спинов, а в данном случае — парамагнетизм суммарных векторов намагниченности. При определенных тем-  [c.208]

Сверхпроводники второго рода отличаются тем, что переход в сверхпроводящее состояние у них осуществляется не скачком, а постепенно. Для них характерны два критических значения магнитной индукции для температуры Т р < Т . Если магнигная индукция во внешнем поле начинает превосходить значение нижней критической индукции, то происходит частичное проникновение магнитного поля во всю толщину сверхпроводящего образца. При этом под действием силы Лоренца электроны в сверхпроводнике начинают двигаться по окружностям, образуя так называемые вихри. Внутри вихря скорость вращения возрастает по мере приближения к оси до тех пор, пока не достигнет критического значения и не произойдет срыв сверхпроводимости. По мере увеличения внешнего магнитного поля количество вихрей возрастает, а расстояние между ними сокращается. Когда оно станет соизмеримым с размером ку-перовской пары, практически весь объем перейдет в нормальное состояние и магнитное поле полностью проникнет в образец. К сверхпроводникам второго рода из чистых металлов можно отнести только ниобий Nb, ванадий V и технеций Те.  [c.124]

Эта температура, ллшълвиля температурой Кюри Т , определяет критическую точку с координатами (Гс. SS Мс = 0). Свойства вещества в этой точке и ее окрестности очень похожи на свойства вблизи критической точки конденсации. Ниже мы обнаруживаем существование не равного нулю значения М даже при нулевом значении магнитного поля. Такая спонтанная намагниченность возникает благодаря межмолекулярным взаимодействиям, которые при зтих условиях приводят к частичному упорядочению спинов. Ниже изотермы также имеют горизонтальный участок. Однако в отличие от фазового перехода жидкость — пар только две крайние точки этого участка изотермы соответствуют физическим состояниям — в данном фазовом переходе мы не имеем двух сосуществующих фаз (хотя отметим, что наличие доменов в реальном ферромагнетике при температурах ниже имеет некоторую аналогию с сосуществованием фаз).  [c.325]

Кроме того, за последние несколько лет была значительно усо вершенствована экспериментальная техника и накоплено много важных экспериментальных данных, что также обогатило интересующую нас область новыми фактами. Исследование критических явлений сопряжено со значительными трудностями. Для проблемы перехода газ — жидкость основной метод состоит в точном измерении давления, плотности и температуры (получение уравнения состояния), а также удельной теплоемкости. Оказывается, что поведение типа степенного закона, позволяющее определить критические показатели, имеет место лишь очень близко от критической точки, скажем при 0 < 10" . Даже определение критических параметров Т , Ро с с точностью, удовлетворяющей потребностям эксперимента, сопряжено с чрезвычайно большими трудностями. Поэтому требуется очень точное определение температуры (погрешность АТ/Тс не выше 10" ). Кроме того, благодаря большой теплоемкости су теоретически расходится) время установления равновесия в системе очень велико (порядка дней). Большое значение сжимаемости также создает серьезные проблемы влияние гравитации на систему становится очень сильным, она создает градиент плотности, который должен быть очень точно учтен. Весьма важные для магнитных систем экспериментальные измерения намагниченности и восприимчивости и проведение экспериментов по рассеянию нейтронов также сопряжены с весьма существенными трудностями их преодоление требует большого искусства и тщательности. Мы не можем вдаваться здесь в подробности и рекомендуем читателю обратиться к оригинальным работам и обзорам.  [c.357]

В жестких сверхпроводниках эффект Мейсснера проявляется очерь слабо. Даже если охлаждение жесткого сверхпроводника происходит в магнитном поле, меньшем критического поля для всей массы образца, то нити становятся сверхпроводящими раньше, и даже когда температура достигает значения, при котором вся масса становится сверхпроводящей, магнитный поток, захваченный нитями, не может быть вытолкнут из образца. Поэтому эффект Мейсснера может иметь место только в том объеме вещества, который не находится внутри контура, образуемого нитями, и потому величина этого эффекта должна быть весьма малой. Из термодинамических соображений следует [62], что если толщина образца или нити меньше SI/ S, то переход в сверхпроводящее  [c.139]

Известно, что сверхпроводник переходит из сверхпроводящего состояния в нормальное, если его температура превышает некоторое критическое значение Тс или внешнее магнитное поле превышает значение Не. Однако гранулы из сверхпроводникоя первого рода (1п, Зп, ТК Hg и др) могут оставаться в сверхпроводящем состоянии, если температура или магнитное поле не намного больше или Не. Такое перегретое состояние является метастабильным, и под воздействием пролетающей заряженной частицы гранулы могут перейти в нормальное состоя-н ие.  [c.281]

L A У, который, например, описывает кинетику сверхпроводящего перехода проводника в магнитном поле в условиях, удаленных от равновесия. Так, Л = 2Ь дАц1дНУ АНУ, где АН = Не —Н Н напряженность магнитного поля Н - критическое значение Н при температуре Т, когда разрушается сверхпроводящее состояние. Этот вид закона роста сверхпроводящей фазы был экспериментально установлен Фабером [31].  [c.135]



Смотреть страницы где упоминается термин Критическая температура магнитного перехода значения : [c.416]    [c.161]    [c.22]    [c.656]    [c.670]    [c.580]    [c.244]    [c.215]    [c.33]    [c.345]    [c.345]    [c.614]    [c.629]    [c.636]    [c.657]    [c.657]    [c.207]    [c.208]    [c.97]    [c.109]    [c.26]    [c.206]   
Физика твердого тела Т.2 (0) -- [ c.331 ]



ПОИСК



Значения критические

Критическая температура магнитного перехода

Температура критическая

Температура критическая (температура перехода

Температура магнитная

Температура перехода



© 2025 Mash-xxl.info Реклама на сайте