Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сверхпроводники, температура

Переход из нормального в сверхпроводящее состояние происходит в отсутствие внешнего поля при определенной характерной для данного сверхпроводника температуре, называемой критической температурой Тк. При наличии внешнего поля переход из нормального в сверхпроводящее состояние или обратный переход существенно зависит от формы сверхпроводника и может происходить неодновременно в его разных точках, если поле неоднородно вдоль поверхности образца.  [c.150]


Сверхпроводники. температура перехода 116 Свет естественный 163 Свеча 156  [c.206]

В сверхпроводниках первого рода сверхпроводящее состояние достигается фазовым переходом второго рода при температуре Тс, которая зависит от рода металла, его чистоты, степени отжига, величины приложенного магнитного поля. Для некоторых металлов в нулевом магнитном поле сверхпроводящий переход позволяет реализовать реперную температурную точку. Считается, что ширина перехода достаточно мала и, наблюдая переход, можно определить его температуру. Эти вопросы детально исследовались в НБЭ [69], в результате-чего было соз-  [c.166]

Температура сверхпроводящего перехода определяется как средняя точка перехода, которая, по-видимому, не зависит от метода наблюдения по взаимоиндукции, сопротивлению или теплоемкости [72] (рис. 4.22). Общепринятым при воспроизведении температуры перехода является метод взаимоиндукции на переменном токе. В сверхпроводниках первого рода ниже температуры перехода весь магнитный поток выталкивается из металла. Это явление называется эффектом Мейсснера. Выталкивание потока можно наблюдать при использовании моста взаимоиндукции. Для компенсации внешних магнитных полей применяются дополнительные катушки Гельмгольца. Ток в катушках Гельмгольца может устанавливаться по максимальному значению Гс, соответствующему нулевому магнитному полю в сверхпроводнике.  [c.167]

Для температурного интервала от 1 до 280 К опубликованы таблицы термо-э.д.с. термопар N1—Сг/Аи—0,02 ат.% Ре и N1— Сг/Ап—0,07 ат.% Ре [50]. В очень сильных магнитных полях, -больше 8 Тл, рекомендуется использовать термопару типа Е. При температурах ниже 1 К различие между термо-э.д.с. сплавов N1—Сг и Аи—Ре становится очень малым. Если, однако, заменить электрод из сплава N1—Сг сверхпроводником, например ниобием, для которого термо-э.д.с. точно равна нулю, то можно получить термопару для измерения температур до 0,05 К.  [c.295]

Сверхпроводимость. В 1911 г. нидерландский ученый Г е й к е К а м е р л и к г-О н н е с (1853— 1926) обнаружил, что при понижении температуры ртути до 4,1 К ее удельное сопротивление скачком уменьшается до нуля (рис. 153). Явление уменьшения удельного сопротивления до нуля при температуре, отличной от абсолютного нуля, называется сверхпроводимостью. Материалы, обнаруживающие способность переходить при некоторых температурах, отличных от абсолютного нуля, в сверхпроводящее состояние, называются сверхпроводниками.  [c.152]


Кристаллическая структура. Можно было предполагать, что переход в сверхпроводящее состояние связан с какими-то изменениями кристаллической структуры. Однако изучение кристаллической структуры сверхпроводников рентгеновскими методами показало, что при понижении температуры металла ниже Тс не происходит никаких изменений ни в симметрии решетки, ни в ее параметрах. Более того, было установлено, что свойства твердого тела, зависящие от колебаний кристаллической решетки, также остаются неизменными. Например, температура Дебая и решеточный вклад в теплоемкость — одни и те же в нормальной и сверхпроводящей фазах. Все это позволило сделать вывод, что сверхпроводимость не связана с какими-либо изменениями кристаллической структуры.  [c.263]

Ч. Рейнольдсом с сотрудниками было установлено, что образцы сверхпроводника, изготовленные из различных изотопов одного и того же элемента, обладают различными критическими температурами. В большинстве случаев Тс обратно пропорциональна корню квадратному из массы изотопа. Изотопический эффект свидетельствует о том, что хотя кристаллическая решетка при переходе в сверхпроводящее состояние и не изменяется, она играет существенную роль в изменении свойств электронного газа. Зависимость Тс от массы изотопа показывает, что для явления сверхпроводимости важное значение имеет взаимодействие электронов с колебаниями решетки. Других причин зависимости Тс от числа нейтронов в ядре атома нет.  [c.264]

IF 22. Группа IVa. Элементы группы IVa особенно усиленно изучались по многим причинам. Два из элементов этой группы встречаются при низких температурах в двух различных кристаллических модификациях. Два элемента—олово и свинец—являются сверхпроводниками, причем для олова были особенно подробно изучены термодинамические соотношения при сверхпроводящем переходе. Наконец, теплоемкость решетки алмаза, а также графита исследовалась теоретически.  [c.345]

Несмотря на перечисленные трудности, метод адиабатического размагничивания послужил основой большого числа новых исследований. Наиболее простыми являются эксперименты, относящиеся к определению магнитных свойств самих парамагнитных солей и достигаемых с их помощью абсолютных температур. Однако ири помощи солей охлаждались также и другие материалы с целью проведения на них физических измерений. В последние годы были изучены свойства жидкого гелия, открыто несколько новых сверхпроводников и измерена электропроводность и теплопроводность многих металлов.  [c.424]

Во-первых, возможен метод адиабатического намагничивания сверхпроводников [21, 221. Энтропия сверхпроводящего метал.та при температуре ниже точки перехода в нормальном состоянии выше, чем его энтропия в сверхпроводящем состоянии. Следовательно, при изотермическом наложении магнитного поля и при переходе этого поля через критическое значение энтропия скачком возрастает. Если наложение поля производится адиабатически, температура падает до значения, при котором величина энтропии в нормальном состоянии равна ее величине в сверхпроводящем состоянии при исходной температуре.  [c.429]

В последние годы был предложен ряд феноменологических теорий, рассматривающих границы раздела между фазами все они основываются на двухжидкостной модели сверхпроводников. Поверхностная энергия границы раздела между сверхпроводящей п нормальной фазами в этих теориях связывается с постепенным изменением параметра порядка а> от нуля в нормальной фазе до соответствующего, зависящего от температуры равновесного значения в сверхпроводящей фазе. Подробное рассмотрение этих теорий проводится в гл. IX, п. 28 и 29.  [c.651]

Отмеченные выше результаты работ с магнитными термометрами и газовым термометром НФЛ позволили найти, а затем устранить термодинамическое несоответствие известных температурных шкал по давлению паров Не и Не с температурной шкалой, лежащей выше 13,81 К- Недавно в КОЛ разработаны новые таблицы зависимости давлений насыщенных паров гелия от температуры, соответствующие температурам по ПТШ-76. Представляется весьма вероятным, что новая МПТШ будет иметь своей основой для воспроизведения температур ниже 4,2 К температурную зав-исимость давления паров гелия вплоть до температур порядка 0,5 К. В качестве реперных температур для этого интервала возможно также применение переходов сверхпроводник-нормальный металл в чистых веществах. Однако исследования последних лет показали, что эти устройства требуют чрезвычайно осторожного обращения и приписанные температуры переходов могут оказаться сдвинутыми на величину, превышающую 1 мК- Кроме того, материалы из разных источников обнаруживают различающиеся величины Тс, что затрудняет применение этого способа в МПТШ.  [c.7]


Соединение КзСбо становится сверхпроводником при 18 К и ниже [32]. Если калий заменить на рубидий, температура повысится до 30 К. Сверхпроводимость материала, допированного цезием и рубидием - при 33 К [32].  [c.60]

На конференции в мае 1994 года по новым направлениям в исследованиях фуллеренов [30] была предсказана высокотемпературная свехпроводи-мость твердых высших фуллеренов, легированных атомами щелочных металлов например, критическая температура сверхпроводников на основе С-84 может достигать 100 К.  [c.60]

Охлам<дение сверхпроводника приводит, во-первых, к тому, что при Т = Тс происходит скачок теплоемкости без появления скрытой теплоты. Это означает, что сверхпроводящий переход является фазовым переходом второго рода. Во-вторых, при Т< Тс зависимость теплоемкости от температуры определяется выражением вида  [c.264]

Эффект Мейсснера—Оксенфельда. Изучая поведение сверхпроводников в магнитном поле, В. Мейсснер и Р. Оксенфельд установили, что если образец сверхпроводника охлаждать в магнитном поле до температуры ниже Тс, то в точке сверхироводящего перехода магнитное поле выталкивается из образца. Другими словами, в сверхпроводнике магнитная индукция В равна нулю, т. е. сверхпроводник является идеальным диамагнетиком.  [c.264]

Ширина энергетической щели уменьшается с повышением температуры. Действительно, для разрыва куперозской пары и создания двух элементарных возбуждений необходимо затратить энергию 2Д (обозначение До относится к случаю 7=0 К). Если температура сверхпроводника отлична от нуля и такова, что k T— 2Д, то многие куперовские пары разорвутся под влиянием теплового воздействия. При этом в к-пространстве много состояний заполнено одиночными электронами (или, как мы их назвали, элементарными возбуждениями). Эти заполненные состояния уже не участвуют в создании пары, следовательно, не дают понижения энергии системы. Энергия сверхпроводника повышается. Эти же состояния не участвуют теперь в формировании энергетической щели. Следовательно, чем больше разорванных пар, тем больше элементар-  [c.270]

При проектировании механической части такого прибора необходимо обратить особое внимание на устранение вибраций. С помош,ью сверхпроводящего гальванометра Пуллен [69] получил очень интересные результаты. Он показал, в частности, что термо-э. д. с. идеального сверхпроводника исчезает резким скачком в точке перехода, в то время как в более ранних работах отмечалось, что термо-э. д. с. начинает надать раньше, чем достигается температура сверхпроводящего перехода.  [c.180]

Теплопроводность сверхпроводников (Sn, Hg, In и Та и разбавлеюшх сплавов) при температуре жидкого гелия в нормальном и сверхпроводящем состояниях.  [c.310]

Точные калориметрические измерения в гелиевой области температур начались в 1930 г., когда был создан весьма чувствительный термометр из фосфористой бронзы. Вскоре же был открыт скачок теплоемкости у сверхпроводников и затем обнаружена электронная теплоемкость в металлах, поведение которой, как было установлено, соответствует теоретическим предсказаниям. Продолжала развиваться п теория теплоемкости для некоторых элементов была детально разработана теория колебаний решетки. Разработка зонной теории твердых тел нриве [а к дальнейшему усовершенствованию теории электронной теплоемкости.  [c.315]

II (i) или между электронной теплоемкостью и зависимостью критического поля от температуры для сверхпроводников (см. и. 33). Из экспериментов по адиабатическому размагничиваттю ) может быть получено соотношение между температурой и энтропие , а отсюда и зависимость теплоемкости от температуры. Если периодически менять температуру образца пли подавать тепло короткими импульсами, то теплоемкость можно определить по скорости расиространения температурных колебаний и известной теплопроводности [49]. Мы пе будем останавливаться 3ia различных косвенных методах, а ограничимся рассмотрением только прямого дгетода.  [c.327]

Обсуждается соотношение между KpuBoii зависимости критического магнитного нол 1 от температуры и термодинамическими свойствами сверхпроводников хюдроб-но рассматриваются данные для о.лова.  [c.373]

Эксперименты полностью подтвердили, что сверхпроводящее состояние есть новая особая фаза вещества. Было найдено, что переход в сверхпроводящее состояние наблюдается у 22 металлических элементов. Температуры, при которых этот переход имеет место, лежат в диапазоне 0,4—11° К. Сверхпроводящее состояние свойственно также большому числу сплавов и соединений. Пожалуй, наиболее идеальным сверхпроводником является белое олово. На фиг. 1 приведены некоторые результаты, полученные при тщательных измерениях перехода в сверхпроводящее состояние на монокристалле чистого олова, выполненных де-Хаазом и Фогдом [66J. Если величина измерительного тока Стремптся к нулю, то ширина (резкость) перехода близка к 0,ООГ" К.  [c.612]

Сверхпроводящий переход, наблюдаемый по сопротивлению проволоки, расположенной вдоль направления поля, может быть использован для измерения величины критического поля. Однако такой способ, который практически вполне применим к олову и многим другим сверхпроводникам, в случае некоторых элементов и многих сплавов может привести к ошибочным результатам. Это объясняется тем, что в образце может возникнуть несколько тонких сверхпроводящих нитей, расположепных параллельно областям нормальной фазы, в результате чего измеренные значения критической температуры и критического поля будут выше, чем у сплошного образца. Имея в виду это обстоятельство, можно сказать, что для определения критических значений температуры и поля предпочтительнее производить магнитные измерения, характеризующие свойства всего объема образца в целом.  [c.630]


Мы не можем с полной уверенностью утверждать, что проиорциопаль-ность теплоемкости кубу температуры и выражение (12.3) не являются только грубым приближением к истинному значению теплоемкости для всех сверхпроводников. Кеезом и ван-Лср, исследуя олово, получили систематические отклонения от этой зависимости. Характер изменений этих отклонений с температурой можно видеть из фиг. 18. Несмотря на большой разброс точек, нетрудно видеть, что суш ествуют систематические отклопепия. После второй мировой войны, когда начали широко применяться термометры сопротивления, было проведено значительное число точных H3MepoHnii теплоемкости.  [c.633]

Кривая зависимости критического ноля от температуры, а) Общие замечания. Кривая зависимости критического ноля от температуры для любого сверхпроводника представляет собой в первом ириближении параболу  [c.636]

Для полноты можно указать, что причиной иногда наблюдаемого сильного возрастатшя величин 7 цр., Нцр, и dH p JdT в сплошных сверхпроводниках является пластическая деформация. Этот эффект, вероятно, родствен аномальным свойствам очень тонких пленок, осажденных на поверхности стекла ири 4° К. Такие пленки также имеют более высокие критические температуры и большие крптические поля, чем массивные сверхпроводники. Более того, некоторые висмутовые пленки являются сверхпроводниками. Отжиг обычно уменьшает аномальности в поведении пленок. Для ознакомления с этим вопросом мы отсылаем читателя к работе Сквайра (см. [53].)  [c.641]

Коллоиды. Первые эксперимепты, яспо продемопстрировавшие явления, связанные с проникновением лгагнитного поля в глубь сверхпроводников, были выполнены Шенбергом [196] на коллоидах ртути, представлявших собой большое число маленьких шариков, взвешенных в мелу. Измерялся полный магнитный момент х образца в зависимости от приложенного магнитного поля при различных температурах. Результаты выражались через отношенпе где магнитный момент сферического образца ртути, масса которого раина общей массе ртути, содержавшейся в коллоидной системе.  [c.642]


Смотреть страницы где упоминается термин Сверхпроводники, температура : [c.429]    [c.277]    [c.220]    [c.221]    [c.266]    [c.210]    [c.226]    [c.302]    [c.335]    [c.443]    [c.449]    [c.585]    [c.587]    [c.588]    [c.591]    [c.633]    [c.634]    [c.636]    [c.639]    [c.648]   
Справочник по элементарной физике (1960) -- [ c.0 ]



ПОИСК



Адиабатическое намагничивание сверхпроводников, метод достижения сверхнизких температур

Критическая скорость сверхпроводников (температура перехода)

Сверхнизкие температуры метод адиабатического намагничивания сверхпроводников

Сверхпроводник при абсолютном нуле температур

Сверхпроводник при конечных температурах Вывод уравнений теории сверхпроводимости в фононной модели

Сверхпроводники

Сверхпроводники 2-го рода при низких температурах

Сверхпроводники, температура перехода

Температура сверхпроводника критическая



© 2025 Mash-xxl.info Реклама на сайте