Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения устойчивости замкнутой цилиндрической оболочки

В задачах устойчивости однородная система уравнений должна быть подчинена однородным граничным условиям. Так, если на торце замкнутой цилиндрической оболочки задано w = О, то остальные три однородных граничных условия на этом торце будут  [c.245]

В отличие от этого критерия в ряде работ исследуется возможность бифуркации основного моментного состояния с мгновенным упругим переходом в соседнюю близкую равновесную форму. Момент бифуркации определяется как критический. Возможность бифуркации объясняется интенсивным развитием сжимающих усилий в срединной поверхности оболочки вследствие ее деформирования при ползучести. Такой подход близок к эйлерову. При этом кроме уравнений основного состояния необходимы уравнения устойчивости в малом . Существование нетривиальных вещественных решений этих уравнений для некоторого момента времени свидетельствует о возможности бифуркации. Это значение времени может быть меньшим значения, соответствующего выпучиванию оболочки в большом . Подобная методика использована, например, в работах [18, 20, 21, 71, 84, 91], причем для замкнутых круговых цилиндрических оболочек вводятся осесимметричные начальные прогибы и основное состояние рассматривается как осесимметричное, а близкие формы равновесия — как неосесимметричные. В работе [91] предпринята попытка исследовать устойчивость смежной несимметричной формы равновесия на основе изучения закритического поведения оболочки.  [c.6]


Для замкнутой в окружном направлении цилиндрической оболочки в соответствии с порядком полученной системы уравнений на каждом из торцов должно быть задано по четыре граничных условия два граничных условия относительно нормального прогиба w и его производных и два граничных условия относительно тангенциальных перемещений и и и их производных. Следует подчеркнуть, что входящие в систему уравнений (8.11) бифуркационные перемещения и, V, w описывают отклонения срединной поверхности оболочки от начальной до-критической формы равновесия. Поэтому однородные граничные условия для этих перемещений непосредственно не связаны с граничными условиями начального докритического состояния и должны формулироваться независимо от.них (примеры формулировки граничных условий будут рассмотрены в следующих параграфах при решении конкретных задач устойчивости оболочек).  [c.223]

Мы не приводим здесь всех выкладок специально для цилиндрической оболочки, а сразу же оговоримся, что высказанные выше рассуждения будут справедливы для любой замкнутой оболочки вращения, которая после потери устойчивости покрывается одинаковыми ямками и выпучинами. Поэтому можно сразу воспользоваться уравнениями 34. Только в данном случае они будут отнесены к отдельно взятой ямке или выпучине  [c.259]

Уравнения (15. 16) используются в предположении, что после потери устойчивости от действия внешнего давления в осевом направлении оболочки может образоваться только одна полуволна. Такое предположение реализуется, например, в случае действия растягивающей осевой силы Л . Если эта сила будет сжимающей, то принятое допущение правомерно тогда, когда абсолютная величина сжимающего усилия мала по сравнению с его критическим значением. Такая ситуация возникает при создании в замкнутом цилиндрическом баке глубокого вакуума.  [c.360]

На втором этапе каким-либо численным методом интегрируют уравнения движения деформируемой конструкции с начальным прогибом при заданной внешней подвижной нагрузке. Многочисленные результаты решений и экспериментальных исследований несущей способности и динамической устойчивости замкнутых цилиндрических и конических оболочек, а также 1шастин и панелей при действии на них ударных волн с различной ориентацией фронта приведены в работах [16, 37]. В ряде случаев граница устойчивости достаточно хорошо описывается выражением вида (7.7.4). Например, при действии волны давления на коническую оболочку (фронт волны перемещается параллельно оси конуса) одна из асимптот гиперболь соответствует статическому критическому внешнему давлению найденному для цилиндрической оболочки с радиусом, равным среднему радиусу усеченной концческой оболочки, и длиной, равной длине образующей конуса. Другая асимптота  [c.516]


В задаче устойчивости круговой замкнутой цилиндрической оболочки в условиях ползучести при действии продольной сжимающей нагрузки для расчета критического времени необходимо задать некоторый начальный прогиб. В работах Френча и Пателя, Самуэлсона, Хоффа [240] задается осесимметричный периодический по длине оболочки начальный прогиб. В течение всего процесса ползучести в возмущенном движении оболочка остается осесимметричной, й критическое время (в геометрически линейной постановке) определяется обращением прогиба в бесконечность. В уравнениях, описы-вгиощих ползучесть, Хофф в работе [240], как и в большинстве своих работ, не учитывал упругих деформаций. Зависимость критического времени от амплитуды нач-ального прогиба для двухслойной модели оболочки, как и в задачах выпучивания стержней, носит логарифмический характер, В работах последнего времени [242] Хофф предложил учитывать влияние упругой деформации на критическое время с помощью приближенной формулы  [c.276]

Рассмотренные две основные задачи устойчивости цилиндрической оболочки в классической постановке допускают замкнутое аналитическое решение. Подавляюшее большинство других задач устойчивости оболочек удается решить только с помощью различных приближенных методов, В настоящее время разработаны эффективные численные методы решения систем, шнейных обьпшовенных дифференциальных уравнений. Поэтому все задачи устойчивости упругих оболочек вращения при осесимметричном начальном состоя-  [c.213]

В шестой главе рассматриваются слоистые цилиндрические оболочки. Замкнутая система дифференциальных уравнений, описывающая в линейном приближении процесс деформирования слоистой упругой ортотропной композитной цилиндрической оболочки, получена из общей системы и использована при исследовании осесимметричного изгиба оболочки, нагруженной равномерно распределенным внутренним давлением. Выполнен параметрический анализ влияния поперечных сдвигов на интегральные (прогибы, усилия, моменты) и локальные (нагрузки начального разрушения) характеристики напряженно-деформирован-ного состояния. На примере этой задачи исследована зависимость решения от функционального параметра /(z) и показано, что в большинстве практически важных случаев этот параметр можно принять соответствующим квадратичной зависимости сдвиговых поперечных напряжений от нормальной координаты. В параграфе 6.4 дано решение задачи об устойчивости цилиндрической многослойной оболочки, нагруженной внешним давлением. Эта задача рассмотрена как на основе разработанных в настоящей монографии уравнений, так и на основе других вариантов уравнений устойчивости, приведенных в третьей ее главе. Выполнен параметрический анализ полученных решений, что позволило выявить и оценить влияние поперечных сдвиговых деформаций, обжатия нормали, кинематической неоднородности, моментности основного равновесного состояния на критические параметры устойчивости.  [c.14]


Смотреть страницы где упоминается термин Уравнения устойчивости замкнутой цилиндрической оболочки : [c.281]    [c.501]   
Общая теория анизотропных оболочек (1974) -- [ c.357 ]



ПОИСК



425 — Уравнения оболочек цилиндрических

Оболочка Устойчивость

Оболочка замкнутая

Оболочка цилиндрическая

Оболочка цилиндрическая замкнутая

Оболочки уравнения

Уравнение устойчивости

Уравнения устойчивости оболочек

Устойчивость замкнутой цилиндрической оболочки

Устойчивость цилиндрических

Устойчивость цилиндрических - оболочек

Ц замкнутый



© 2025 Mash-xxl.info Реклама на сайте