Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинетика газа

Классический мир 299 Коллапсы волновых функций 153 Кинетика газа 305 Конвекция 317 Кубит 127, 131  [c.393]

Экспериментальные исследования реактивных сопел различных двигателей гиперзвуковых летательных аппаратов с моделированием всех натурных параметров газового потока в настоягцее время проведены быть не могут из-за сложности всех происходящих в соплах процессов, поэтому большое значение здесь приобретают методы расчета в соплах с учетом химической кинетики газов.  [c.347]


Изучение молекулярного рассеяния важно для практики. Молекулярное рассеяние в газах и парах играет существенную роль при изучении строения вещества. Методы молекулярного рассеяния при изучении растворов полимеров, белков, электролитов дают сведения о молярной массе макромолекул, их размерах и форме. Молекулярное рассеяние является одним из эффективных способов изучения кинетики различных флуктуаций и межмолекулярного взаимодействия.  [c.111]

Уравнение Больцмана (7.23) представляет собой очень сложное нелинейное интегродифференциальное уравнение, приближенное решение которого возможно только в некоторых частных случаях. Значение уравнения Больцмана далеко выходит за рамки физической кинетики разреженного газа. Оно позволяет получить ряд принципиально важных общих выводов.  [c.114]

Из формулы (17.19) по аналогии с формулой для теплопередачи следует, что скорость Ш реакции определяется величиной двух последовательных сопротивлений , которые должен преодолеть газообразный реагент на пути превращения из исходного состояния в конечное диффузионного сопротивления 1 /р, определяемого интенсивностью массо-отдачи между газом и поверхностью, и кинетического сопротивления /к, зависящего от скорости собственно химического взаимодействия. Если реагент доставляется к поверхности раздела значительно легче, чем реагирует с нею, т. е. р э>й, то его концентрации у поверхности и вдали от нее равны с Со и При этом скорость реакции определяется только кинетикой процесса (значением к) и практически не зависит от условий массоотдачи. Такой режим называется кинетическим. В этом режиме интенсивность сгорания можно увеличить за счет увеличения значения к, т. е. прежде всего за счет повышения температуры.  [c.154]

С эффектом вязкости и явлением диффузии, а в некоторых случаях с физико-химическими процессами, например с горением внутри камеры смешения. Несмотря на это, в случае цилиндрической камеры смешения при пренебрежении силами трения на границах камеры смешения во многих случаях, когда смешение в действительности осуществляется, характеристики результирующего потока в сечении 5з можно рассчитать независимо от промежуточных процессов в камере смешения. По аналогии и по существу в эжекторе параметры потоков в сечениях Sl 1 2 и связаны универсальными уравнениями сохранения так же как на сильных разрывах — скачках, которые тоже во многих случаях (но тоже не всегда) можно вводить и рассматривать в рамках моделей идеальных жидкостей или газов независимо от внутренних непрерывных, но резко меняющихся процессов в действительных явлениях, связанных со свойствами вязкости, теплопроводности, с кинетикой химических реакций и т. п.  [c.114]


Выше была рассмотрена кинетика химических реакций горения в предположении, что подача окислителя (кислорода воздуха и других) осуществляется без ограничения. Однако при анализировании процессов необходимо учитывать не только кинетические (физико-химические) факторы, к которым относят концентрацию реагирующих веществ, давление и температуру их, но и диффузионные процессы, влияющие на подачу окислителя к горящему топливу и на образование смесей, определяемые аэродинамическими факторами — скоростью потоков реагирующих веществ, геометрической формой и размерами тел, расположенных на пути потоков и газов, интенсивностью турбулентности газового факела, t. е. физическими факторами. Главным определяющим процессом при горении топлива в конкретном случае может быть кинетический или диффузионный. Если скорость горения топлива (или общее время, необходимое для его сгорания) лимитируется процессом смешения, то горение протекает в диффузионной области. Наоборот, если смешение происходит очень интенсивно и процесс в целом лимитируется кинетикой собственно реакций горения, то горение находится в кинетической области.  [c.232]

На рис. 3.6 показана схема одного блока лабораторной установки Таллинского политехнического института для исследования кинетики высокотемпературной коррозии сталей [ПО]. Установка состоит из вертикально расположенных, параллельно работающих электрических печей с внутренним диаметром 40— 0 мм. В каждой печи автоматически поддерживается заданная температура. Печи в нижней части соединены между собой распределительной трубой, через которую подаются продукты сгорания газа из камеры сгорания. Распределитель-  [c.114]

КИНЕТИКА КОРРОЗИИ В ПРОДУКТАХ СГОРАНИЯ ГАЗА  [c.133]

Кинетика высокотемпературной коррозии котельных сталей в продуктах сгорания природного газа как в лабораторных, так и в промышленных условиях довольно хорошо изучена. Компонентами в продуктах сгорания газа, которые наибольшим образом влияют на интенсивность коррозии, являются кислород и водяной пар. Концентрация первого существенным образом зависит от режима сгорания топлива (от коэффициента избытка воздуха), а количество водяного пара главным образом определено составом сжигаемого топлива. С увеличением концентрации кислорода в продуктах сгорания улучшаются условия его транспорта к реакционной поверхности, и тем самым процесс коррозии интенсифицируется. Определенное влияние на характер коррозии металла в продуктах сгорания газа оказывает и концентрация водяного пара. Это особенно касается коррозии при температуре выше 570 °С, когда существование водяного пара в окружающей среде способствует образованию на поверхности стали вюстита, т. е. возникновения трехслойной оксидной пленки. Как отмечено ранее, в этой температурной области окисление железа протекает более интенсивно, чем в условиях, когда на поверхности металла возникает двухслойный оксид.  [c.133]

КИНЕТИКА КОРРОЗИИ В ПРОДУКТАХ СГОРАНИЯ МАЗУТА Влияние температуры газа на интенсивность коррозии металла  [c.169]

Влияние температуры. Согласно общим законам химической кинетики, повышение температуры воды должно усиливать коррозию металла. Однако в случае кислородной коррозии при повышении температуры коррозионной среды необходимо учитывать возможность одновременного удаления части агрессивных агентов, а также протекание других побочных явлений. В открытых системах (баках, негерметизированных смешивающих подогревателях), где при подогреве воды возможно выделение растворенных в ней газов, скорость коррозии сначала увеличивается с ростом температуры, а затем уменьшается, так как интенсификация кор-  [c.22]

Кинетика окисления сплавов при разных температурах за 7 циклов нагревания и охлаждения в атмосфере, образующейся при сгорании смеси газов (47,2% На 27,5 СН4 3,4% ненасыщенный углеводород 7,4% СО 0,8% Oj 11,5% Nj) а 50%-ном избытке воздуха, необходимом для полного сгорания газа — см. также рис. 119—127  [c.244]


Скорость роста усталостных трещин сильно зависела от давления водяного пара в диапазоне 10" —10" тор, но она была нечувствительной к давлению паров воды при более высоких или более низких давлениях (рис. 21). Это поведение подобно тому, которое было обнаружено у алюминиевых сплавов и описано при помощи модели, основанной на кинетике абсорбции газов [1].  [c.431]

Монография посвящена широкому кругу вопросов кинетической теории газов. Изложены основные положения теории и описано ее применение к наиболее типичным задачам. Большое внимание уделено кинетике разреженной плазмы. Дано общее обоснование теории, позволившее ныйти за рамки больцмановской кинетики газов. Физическая общность изложения и рассмотрение большого числа конкретных физических задач позволяют этой книге служить пособием для всех изучающих физическую кинетику.  [c.2]

Применительно к задачам кинетики газов граничные условия, аналогичные условиям Маршака, рассматривали Грэд [1], а также Ван Чан и Уленбек [14—16] ).  [c.394]

Исследование зависимости степени дегазации пудры и холоднопрессованных брикетов от температуры нагрева и кинетики газо-выделения показало, что при нагревании материала до 700° С имеются два температурных участка интенсивного газовыделения при 370—420 и 580—620° С (рис. 120). Первый максимум газовыделения связан с разложением стеариновой кислоты, а второй — гидроокиси алюминия с отделением двух молекул воды, при взаимодействии которых с алюминием выделяется водород, о чем уже говорилось ранее [13].  [c.249]

D/dr. Взаимодействие частиц со стенками канала призван отражать коэффициент Кф, определенный косвенно (по кинетике нагрева зерна) и зависящий лишь от диаметра канала. В исследовании Б. М. Максимчука Л. 207 использована экспериментальная установка высотой 18,5 м, замкнутая по частицам (зернопродукты), оборудованная 14 отсчетными задвижками электромагнитного типа и устройством для определения скорости методом меченой частицы, В качестве модели зерна использован пластмассовый контейнер с изотопом Со-60 активностью 0,25 мкюри. Обнаружено, что увеличение скорости частиц происходит не только на начальном, разгонном участке, но и наблюдается за ним, но при меньшем ускорении. При сравнении измеренной скорости частиц Ут.л и скорости, подсчитанной по разности v—Ув, необходимо учитывать увеличение скорости газа по длине за счет падения давления и загроможденности сечения. Учет этих поправок по [Л. 207] должен дать закономерное неравенство  [c.85]

Периодическое определение изменения массы образца металла, подвешенного на платиновой или нихромовой проволоке к чашке аналитических весов и находящегося в атмосфере электрической печи, нагретой до заданной температуры, позволяет проследить кинетику газовой коррозии металла на одном образце и установить закон роста пленки во времени (метод не пригоден при образовании на металле легко осыпающейся или возгоняющейся пленки продуктов коррозии). На рис. 320 приведена схема установки для исследования кинетики газовой коррозии металлов в воздухе и продуктах сгорания газа, которая может быть использована и при подаче в нее других газов. На установке ИФХ АН СССР (рис. 321) возможно одновременное испытание шести образцов. Поворачивая крышку печи, можно захватить крючком любой образец для взвешивания. Чтобы можно было загружать образцы, в крышке сделаны щелевидные отверстия. Более чувствительными являются вакуумные микровесы различных конструкций (Мак-Бэна, Гульбрансена и др.).  [c.437]

В. данной главе рассматриваются вопросы химической коррозии металлов. Процесс разрушения металлов и сплавов вслодст-ине взаимодействия их с внешней средой, не сопровождающийся возникновением электрических токов, называют химической коррозией. Характерной особенностью процесса химической коррозии является, в отличие от электрохимической коррозии, образование продуктов коррозии непосредственно в месте взаимодействия металла с агрессивной средой. Химическая коррозия подчиняется основным законам химической кинетики гетерогенных реакций и наблюдается при действии на металл сухих газов или жи.чкпх иеэ.лектролитов.  [c.131]

Т. е. в течение некоторого характерного для кинетики данной реакции времени т ). Поэтому ясно, что за ударной волной будет следовать передвигающийся вместе с нею слой, в котором и происходит горение, причем толщина этого слоя равна произведению скорости распространения волны на время т. Существенно, что она не зависит от размеров тел, фигурирующих в данной конкретной задаче. Поэтому при достаточно больших характерных размерах задачи можно рассматривать ударную волну вместе со следующей за ней областью горения как одну поверхность разрыва, отделяющую сгоревший газ от несгорев-шого. О такой поверхности разрыва мы будем говорить как о детонационной волне.  [c.671]

Теория и эксперимент в этом вопросе пережили длинную историю. В экспериментальном отнощении имелись и совсем наивные попытки, и попытки серьезного характера, вроде тех, которые привели Крукса к открытию особого вида явлений (радиометрических), связанных с кинетикой разреженных газов. Франклин рассматривал неудачи всех известных к его времени попыток обнаружить давление света как один из аргументов против корпускулярной теории света. Впоследствии Юнг также прибегал к этому аргументу, хотя ни Франклин, ни Юнг не имели возможности указать минимальную величину предполагаемого давления, поскольку относительно массы световых частиц нельзя было высказать никакого суждения и, следовательно, нельзя было судить, достаточна ли чувствительность крутильных весов, применявшихся для этих опытов.  [c.660]

Оценка действительного изменения коицентрации реагирующих веществ по поперечному сечению потока с учетом кинетики хилшче-ских реакции представляет большие трудности. С другой стороны, итересные для практики явления теплообмена при наличии химических реакций протекают обычно в условиях высоких температур, когда естественно ожидать большие скорости реакци11. Поэтому современные расчеты процессов теплообмена между стенкой и химически реагирующим газом чаще всего основываются на равновесном составе газовой смеси.  [c.361]


Для внедрения в технику новых технологических процессов и разработки новых аппаратов необходимо уметь прогнозировать поведение материалов и веществ в условиях повышенных температур, давлений и скоростей. В связи с этим за последние годы на стыке наук, таких, как, например, кинетическая теория газов, химическая кинетика, газовая динамика, сложилась новая наука—механика реагирующих газов (другое употребляющееся название — аэротермохимия), занимающаяся изучением Течений газов в условиях повышенных температур, при которых оказывается необходимым учет физико-химических процессов, приводящих к изменению состава газа и внутреннего состояни его атомов и молекул.  [c.3]

Таким образом, исследователь, работающий в области аэротермохимии, должен быть специалистом не только и газовой динамике, но и ориентироваться в смежных областях знаний, например, химической кинетике, кинетической теории газов, теории излучения и т. д.  [c.4]

Изменение парциального давления активных газов влияет не только на кинетику окисления металлов, но и определяет газонасы-щение металлов или их дегазацию. Изменение содержания газов приводит к изменению физико-механических свойств деформируемого металла — пластичности, прочности, коррозионной стойкости и др.  [c.527]

Тщательно перемешанные топливо и окислитель, или, как говорят, предварительно подготовленная смесь, сгорают обычно в виде пламени. Оно носит название кинетического, или нормального, поскольку в этих условиях скорость его распространения определяется только кинетикой реакций, а не скоростью смешения реагентов. Распределение температур и концентраций реагентов во фронте пламени в координатах, движущихся вместе с ним, представлено на рис. 17.2. В этих координатах свежая смесь с плотностью ро подходит к фронту со скоростью Нн, а продукты сгорания с плотностью Рг<Ро уходят со скоростью Нг>Нн. Массовые количества подходящих и отходящих газов одинаковы ро н=РгМг. Процесс горения, т. е. химического взаимодействия молекул топлива и окислителя, в основном протекает в очень узкой зоне (она называется  [c.146]

Кинетика высокотемпературной коррозии металла в продуктах сгорания газа под влиянием поташа КаСОз рассмотрена А. В. Прикком и др. [138, 139].  [c.167]

Сам принцип перемещения части раствора на время анализа из основного объема ячейки без ее разгерметизации в защищенную свинцом измерительную кювету впервые был реализован при изучении кинетики электродных процессов на амальгамах, меченных у-изотопами и жесткими р-изотопами. Раствор передавливался в кювету с помощью газа, детектором излучения служил гейгеровский счетчик. При анализе р-активных растворов использовалась кювета с тонкостенной стеклянной мембраной, малая толщина которой (0,1 мм) обеспечивала возможность регистрации р-изотопов с максимальной энергией излучения > 0,4 мэВ.  [c.214]


Смотреть страницы где упоминается термин Кинетика газа : [c.263]    [c.305]    [c.305]    [c.307]    [c.309]    [c.311]    [c.313]    [c.315]    [c.832]    [c.352]    [c.133]    [c.435]    [c.5]    [c.77]    [c.126]    [c.253]    [c.136]    [c.173]    [c.455]   
Смотреть главы в:

Динамика и информация  -> Кинетика газа


Динамика и информация (0) -- [ c.305 ]



ПОИСК



Диффузия кинетика в жидкостях и газах

Кинетика

Кинетика гомогенных реакций горения газа

Кинетика коррозии в продуктах сгорания газа

Кинетика рекомбинации и охлаждение газа после нарушения ионизационного равновесия

Представления кинетики сильно разреженных газов

ФИЗИКО-ХИМИЧЕСКАЯ КИНЕТИКА В ГИДРОДИНАМИЧЕСКИХ ПРОЦЕССАХ Динамика неравновесного газа



© 2025 Mash-xxl.info Реклама на сайте