Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Капиллярность жидкосте

В общей постановке задачи учтём свойства инерции, вязкости и весомости жидкости. Сжимаемостью и капиллярностью жидкости пренебрежём. Волновое движение воды может оказать существенное влияние на изучаемое явление, однако мы предположим, что до соприкосновения с телом вода покоилась.  [c.95]

Жидкость, находящаяся в трубке (рис. 1-5) и расположенная выше уровня жидкости в сосуде, называется капиллярной, в отличие от остальной жидкости, которая иногда называется здесь гравитационной. Надо подчеркнуть, что никакого различия между капиллярной и гравитационной жидкостями в отношении их физических свойств нет. Законы равновесия и движения жидкости совершенно одинаковы для капиллярной и гравитационной областей. Единственное отличие капиллярной жидкости от гравитационной заключается в том, что первая названная жидкость сжимается несколько меньшим поверхностным молекулярным давлением.  [c.18]


Капиллярность жидкости 17. 19 Нижние жидкости 14 Клапаны напорные золотникового типа 278  [c.372]

Напомним, что в случае молярного переноса капиллярной жидкости потенциалом влагопереноса является капиллярный потенциал Капиллярный потенциал по определению является отрицательной величиной, и влагоперенос происходит от низшего капиллярного потенциала к высшему аналогично теплопереносу в области отрицательных температур, определяемых по шкале Цельсия (/ < 0°С). При влагосодержании ы = О капиллярный потенциал максимален (Ч макс), а при некотором максимальном влагосодержании (влажность намокания) — равен нулю. Следовательно, для капиллярного потенциала постоянная в соотношении (5-4-5) равна произведению максимального капиллярного потенциала на удельную влагоемкость. Если влагоперенос происходит молекулярным путем (избирательная диффузия), то потенциалом переноса является осмотическое давление р, для которого производная др ди отрицательна.  [c.386]

Капиллярная конденсация влаги обусловлена зависимостью давления паров, насыщающих пространство, от формы поверхности и степени кривизны мениска жидкости, над которым уста-  [c.374]

Д. И. Менделеев дал следующее определение Абсолютной температурой кипения я называю такую температуру, при которой частицы жидкости теряют свое сцепление (поднятие в капиллярной трубке равно нулю, скрытое тепло равно нулю) и при которой жидкость, несмотря ни на какое давление и объем вся превращается в пар- . Многочисленные опыты с реальными газами полностью подтвердили существование критической точки, в которой исчезает различие между газообразной и жидкой фазами.  [c.44]

В зависимости от преобладающей формы связи влаги с материалом все влажные материалы можно разделить па три группы. Если жидкость, содержащаяся в теле, в основном связана капиллярными силами, то тело называется капиллярнопористым (влажный кварцевый песок, древесный уголь, некоторые строительные материалы). Если в теле преобладает осмотическая форма связи жидкости, то тело называется коллоидным (желатин, агар-агар, прессованное тесто и др.).  [c.503]

Д(ж—коэффициент диффузии, характеризующий перемещение капиллярной влаги в виде жидкости  [c.504]

Пористыми теплообменными элементами (ПТЭ) будем называть устройства, в которых осуществляется теплообмен между проницаемой матрицей и потоком жидкости внутри нее. При этом теплоноситель претерпевает фазовые или химические превращения. Рассмотрим ПТЭ, в которых течение вызвано перепадом внешнего давления (а не капиллярным эффектом).  [c.6]


При движении испаряющегося потока насыщенность s проницаемой матрицы жидкостной фазой и толщина микропленки Д уменьшаются. Считаем, что вся жидкость равномерно распределена в виде микропленки на стенках цилиндрических капиллярных каналов диаметром d . Тогда величину s можно выразить через Д с помощью соотношения s = = 1 - (1 из которого следует  [c.85]

Заполнение канала пористым высокотеплопроводным материапом вызывает качественное изменение механизма переноса теплоты и структуры потока теплоносителя также и при фазовых превращениях. Здесь перенос теплоты теплопроводностью от стенки через пористый каркас (или в обратном направлении) исключает высокое термическое сопротивление у стенки, создаваемое сплошной паровой пленкой при испарении теплоносителя или сплошной пленкой конденсата при конденсации потока пара в гладких каналах. Это позволяет полностью завершить фаг зовое превращение потока теплоносителя при высокой интенсивности теплообмена. Кроме того, капиллярные силы обеспечивают равномерную насыщенность проницаемой матрицы жидкостью поперек канала.  [c.117]

Как известно, увеличение площади межфазной поверхности позволяет существенно повысить скорости тепло- и массообменных процессов. В системах газ—жидкость этого увеличения добиваются за счет интенсификации процессов дробления дисперсной фазы. Дробление пузырьков газа в жидкости может осуществляться как в ламинарном, так и в турбулентном потоке жидкости за счет взаимодействия между сплошной и дисперсной фазами [45]. Вязкие напряжения в первом случае или инерционные силы— во втором стремятся деформировать и разрушить пузырек газа. Капиллярные силы поверхностного натяжения полностью или частично компенсируют эти воздействия на пузырьки газа со стороны жидкости. Таким образом, дробление пузырька происходит пли не происходит в зависимости от соотношения между силами вязкого трения и поверхностного натяжения (в ламинарном потоке) либо между инерционными и поверхностными силами (в турбулентном потоке).  [c.123]

В [47] показано, что при выполнении условия (4. 2. 2), когда преобладают инерционные и капиллярные силы, а вязкими силами можно пренебречь, характер процесса дробления пузырька газа жидкостью полностью определяется значением критерия е (4. 2. 1).  [c.130]

Капиллярность — свойство жидкости, обусловленное поверхностным натяжением, занимать в капиллярах уровень, отличающийся на величину h (мм) от уровня той же жидкости в большом резервуаре, с которым капилляр сообщается  [c.61]

Сообщающиеся сосуды. Равенство давлений жидкости на одной и той же высоте приводит к тому, что в сообщающихся сосудах любой формы свободные поверхности покоящейся однородной жидкости находятся на одном уровне (если влияние капиллярных сил пренебрежимо мало).  [c.37]

Капиллярные явления. Особенности взаимодействия жидкостей со смачиваемыми и не-смачиваемыми поверхностями твердых тел являются причиной капиллярных явлений.  [c.84]

Самая низкая температура, которая может быть получена в испарителе (морозильной камере), определяется значением давления паров фреона, так как температура кипения фреона, как и любой другой жидкости, понижается с понижением давления. При постоянной скорости поступления жидкого фреона из конденсатора в испаритель через капиллярную трубку давление паров фреона в испарителе будет тем ниже, чем дольше работает компрессор. Если нет нужды добиваться понижения температуры в испарителе до предельно достижимого значения, то работа компрессора периодически останавливается путем выключения электромотора, приводящего его в действие. Компрессор выключается автоматом, следящим за поддержанием в холодильном шкафу заданной температуры.  [c.107]

В трубках малого диаметра дополнительное давление, обусловленное понерхностнылс патяжение.дг, вызывает подъем (или опускание) жидкости относительно нормального уровня, характеризующий капиллярность жидкости.  [c.11]

Если тело содержит осмотически связанную и капиллярную жидкость, то оно называется коллоидным капиллярнопористым телом (торф, глина, древесина, ткани, зерно, кожа и др.).  [c.503]


Жидкость, заключенная в капиллярах и ограниченная менисками, является свободной жидкостью, за исключением тончайшего слоя жидкости, адсорбционносвязанной у стенок капилляра. Понижение давления пара над поверхностью мениска формально характеризует энергию связи капиллярной жидкости, определяемой не взаимодействием твердой поверхности с жидкостью а действием  [c.320]

Если влажность тела превышает максимальную гигроскопическую, то макрокапилляры пористого тела частично заполнены водой. В этих условиях движение капиллярной жидкости происходит при перепаде капиллярного потенциала. В отличие от случая капиллярного впитывания жидкости, происходящего при непосредственном соприкосновении тел с жидкостью, капиллярный потенциал определяется здесь неоднозначно. Например, если в пористое тело с однородным составом капилляров (песок) ввести ограниченное количество жидкости, то (Зна заполняет не все тело, а только часть его, при этом влажный участок граничит с сухим. Поведение жидкости в песке очень похоже на ее поведение в элементарном капилляре с ограниченным содержанием жидкости. В обоих случаях капиллярный потенциал равен нулю, так как кривизна менисков по периметру влажного участка одинакова. Для элементарного капилляра имеем  [c.365]

Потенциал влагопереноса 0 будем считать положительным ди д > О, а постоянную Ь в области малых значений влагосодержания — равной нулю, полагая, что потенциал влагопереноса абсолютно сухого тела равен нулю. В этом случае потенциал переноса капиллярной жидкости будет равен разности между максимальным капиллярным потенциалом фяакс и капиллярным потенциалом при данном влагосодержании (0 = ф акс — Градиент потенциала влагопереноса будет равен градиенту капиллярного потенциала с обратным знаком (уб = —У Ф)- Аналогичная зависимость будет иметь место и для диффузионного переноса жидкости.  [c.386]

Если влажность тела превышает максимальную гигроскопическую, то макрокапилляры пористого тела частично заполнены водой. В этих условиях движение капиллярной жидкости происходит при перепаде капиллярного потенциала. В отличие от случая капиллярного впитывания жидкости, происходящего при непосредственном соприкосновении тел с жидкостью, капиллярный потенциал определяется здесь неоднозначно. Например, если в пористое тело с однородным составом капилляров (песок) ввести ограниченное количество жидкости, то она  [c.428]

Капилляры с турбулентным течением жидкости имеют в широком диипазоне Q сложный характер зависимости р = f (Q), отличный от квадратнчиого из-за переменности коэффициента трения X. Поэтому квадратичные капиллярные дроссели (нанример, 1 на рис. 3.80) прнменилы в условиях незначительных изменений р и Q, что соответствует условиям в предохранительном клапане при небольшом диапазоне изменения вязкости. Во избен ание засорения и облитерации размер проходов капилляров должен быть не менее 0,6—0,8 мм при условии фильтрации жидкости.  [c.376]

Капиллярная конденсация влаги обусловлена тем, что упругость паров над поверхностью жидкости зависит от кривизны мениска. Если сравнить давление насыщенных паров над плос кой, выпуклой и вогнутой поверхпостя.ми воды, то оказывается, что наибольшим оно будет над выпуклой поверхностью, а наименьшим — над вогнутой поверхностью. В случае вогнутого мениска упругость насыщенного водяного пара над ним значительно отличается от упругости паров во,ды над плоской поверхностью. Так, на воздухе при 15 С и давлении 0,1 Мн м упругость-насыщенного пара над плоской поверхностью равна 1,7 кн м и конденсация происходит при 100%-иой относительной влажности на,д мениском с радиусом кривизны 1,2- 10 мм упругость, паров воды уменьшается до 667 и конденсации паров воды происходит при 397о-ной относительной влажности.  [c.174]

Задача XI—40. Капиллярный вискозиметр имеет бачок диаметром 0 — 50 мм, из которого испытуемая жидкость вытекает в атмосферу по капилляру диаметром = 1 мм и длиной I — 200 м.м, расположенному гори- зоитально.  [c.333]

Влага, имеющая физика-механическую связь, удерживается в капиллярах. Все капилляры делятся на микрокапилляры (радиус MeHbuje 10- см) и макрокапилляры (радиус больше см). Капиллярная влага в зависимости от режима нагревания может перемещаться в теле как в виде жидкости, так и в виде пара.  [c.503]

OM и энергией на межфазной границе, капиллярные эффекты, хаотическое движение, вращение и столкновения частиц, дробление, коагуляция и т. д.) и, в результате, число возможных процессов, которые должны быть отражены в уравнениях, многокрахно расширяется. Поэтому очень важным является описать в едином виде возможные способы учета ряда основных эффектов, привлекая, где это можно, данные теоретического анализа, а где необходимо-эмпирические соотношения и параметры. Именно такой способ изложения дан в гл. 4, где представлены наиболее обш ие замкнутые системы уравнений некоторых движений гетерогенных смесей, построенные с учетом анализа осреднения уравнений движения в гл. 2 и 3. Анализ осреднения позволил более обоснованно и однозначно привлечь замыкающие гипотезы для дисперсных смесей вязких сжимаемых фаз, концентрированных дисперсных смесей с хаотическим движением и столкновениями твердых частиц и обладающих прочностью насыщенных жидкостью пористых сред.  [c.7]

Качественно новые свойства достигаются при фазовом превращении потока теплоносителя внутри примыкающего к сплошной стенке проницаемого материала. В первую очередь, перенос теплоты от стенки теплопроводностью через пористый каркас (или в обратном направлении) исключает высокое термическое сопротивление у стенки, создаваемое сплошной паровой пленкой при кипении теплоносителя или сплошной пленкой конденсата при конденсации потока пара. Это позволяет полностью осуществить фазовое превращение потока при высокой интенсивности теплообмена. Кроме того, капиллярные силы создают равномерную насыщенность пористой структуры жидкостью, чем устраняется расслоение двухфазного потока в канале под действием внешних сил. Поэтому такой способ организации форсированного теплообмена при фазовых превращениях типичен, например, для систем при изменении их ориентацш относительно направления силы тяжести или в условиях пониженной гравитации.  [c.14]


Теплообменные устройства с испытывающим фазовое превращение теплоносителем внутри пористых элементов обладают рядом качественно новых свойств по сравнению с такими устройствами, где теплоноситель - однофазный. Одной из причин этого является особенно высокая интенсивность теплообмена при фазовом превращении теплоносителя внутри проницаемой матрищ>1. Структура потока и механизм теплообмена в этом процессе имеют ряд особенностей и качественно отличаются от аналогичных характеристик в каналах обычных размеров. Причиной этого является то, что размер пор значительно меньше капиллярной постоянной жидкости ajg p -р )].  [c.77]

По мере движения потока происходит быстрая активация центров парообразования. Количество паровых микроструй резко увеличивается и они заполняют все более мелкие поровые каналы. Жидкостные пробки уменьшаются, при этом основная часть жидкости движется в виде постепенно утоняющейся микропленки, которая обволакивает частицы каркаса и заполняет отдельные тупиковые поры. Скорость пара непрерывно возрастает. Вследствие резкого сужения и искривления каналов, прорыва пара в каналы при образовании пузырьков в заполненных ранее жидкостью порах происходит непрерывное разрушение и образование тонких жидкостных перемычек. Затем микропленка жидкости на стенках каналов постепенно испаряется и утоняется, жидкостные перемычки также уменьшаются и разрушаются. Высокоскоростной поток пара сначала уменьшает жидкостную микропленку по поверхности частиц, а затем распределяет по углам поровых каналов в области контакта частиц и тем самым препятствует сворачиванию микропленки под действием капиллярных сил и давления на локальных местах ухудшенной смачиваемости до полного ее испарения, чем достигается очень малая толщина микропленки жидкости перед завершением ее испарения. Давление в двухфазном потоке быстро понижается, а вместе с ним понижается и температура его паровой фазы, которая на любой стадии течения двухфазного потока равна локальной температуре насыщения.  [c.82]

С учетом приведенных в гл. 4 сведений о структуре и теплообмене двухфазного потока внутри проницаемых матриц можно представить следующий механизм процесса. После начала парообразования пар течет сначала отдельными микроструями, которые постепенно заполняют все более мелкие поровые каналы. Жидкость движется в виде постепенно утоняющейся микропленки, которая обволакивает частицы материала и заполняет все сужения и тупиковые поры. Под действием капиллярных сил жидкость в пленке перетекает поперек канала. За счет этого обеспечивается равномерная насыщенность пористой структуры. Такой режим сохраняется до полного испарения всего теплоносителя.  [c.117]

Давление в двухфазном потоке поперек канала постоянно, поэтому температура t паровой фазы, равная температуре насыщения также постоянна. Принимаем, что капиллярные силы обеспечивают равномерное распределение жидкости внутри пористой структуры (ее насыщенности s) поперек канала. Вследствие этого постоянна и интенсивность объемного внутрипорового теплообмена h (s), рассчитываемая по формуле (4.8). Вдоль канала падает, а йу (s) - возрастает.  [c.118]

Дробление ультразвуком. Образование капель жидкости при возбуждении поверхности жидкости ультразвуком исследовалось Кроуфордом [1321, Маккаббином [530] и Лэнгом [458]. Последний получил частотную зависимость размера капель, подтвержденную экспериментальными данными. Пескин [604] исследовал поведение жидкой пленки под действием осциллирующей инерциальной силы, уделив особое внимание условиям, приводящим к неустойчивости типа капиллярных волн. Он установил связь между толщиной пленки б, амплитудой а и частотой <а возбуждающей силы радиус образующейся капли при больших б дается выражением  [c.148]

Перед применением капиллярного контроля поверхности металла должны быть очищены от шлаков, масла и прочих загрязнений. Контролируемые поверхности первоначально смачивают спевд1альной жидкостью - индикаторным пенет-рантом, проникающим в щель на поверхности (рис. 4.18). Основной частью пенетранта обычно является керосин, который исключает закупорку щелевидностей. Проникновение пенетранта может иметь место в результате капиллярност1[, компрессии, воздействия ультразвука, комбинации воздействий. Время действия пенетранта - до 5 мин. Далее проводится очистка поверхности от пенетранта и проявление оставшегося на поверхности рисунка.  [c.218]

Ячейки с вероятностями меньшими пороговой способны заполняться и пропускать сквозь себя жидкость. Оии называются порами. Компьютерное моделирование процесса протекания при задашюм Хц зшспочается в том, что в решетцу с одной стороны начинают "впрыскивать жидкость". Впрыснутая жидкость из любой поры может вторгнуться только в пору, непосредственно находящуюся рядом с данной. Так моделируются капиллярные каналы, или "связи" между порами.  [c.97]


Смотреть страницы где упоминается термин Капиллярность жидкосте : [c.310]    [c.325]    [c.386]    [c.357]    [c.617]    [c.82]    [c.11]    [c.144]    [c.112]    [c.29]    [c.81]    [c.31]    [c.336]   
Технический справочник железнодорожника Том 1 (1951) -- [ c.408 ]



ПОИСК



4i ело капиллярное

Жидкости Капиллярность

Капиллярность



© 2025 Mash-xxl.info Реклама на сайте