Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стали Эффекты облучения

Так, ядерное облучение, увеличивая прочность простых сталей в 1,5—2 раза, примерно в такой же степени уменьшает пластичность и вязкость. Эффект ядерного упрочнения металла, подвергнутого предварительно обычным методам упрочнения (наклепу, закалке), меньше, чем в случае неупрочненного, стоженного металла. С повышением температуры эффект ядерного облучения уменьшается и при температурах выше порога рекристаллизации он практически отсутствует.  [c.557]


Существенная перестройка исходной микроструктуры в результате облучения является, между прочим, результатом взаимодействия точечных дефектов с дислокациями, что влияет на эффект РУ стали, особенно в холоднодеформированном состоянии.  [c.101]

Бор добавляют к различным материалам, используемым в системе управления и защиты. Для изучения влияния облучения была исследована сталь 304, содержащая от 0,5 до 1,0 вес.% В . В этом случае имеет место ДВОЯКИЙ эффект повреждение матричного материала быстрыми нейтронами и образование лития и гелия в результате реакции на В .  [c.250]

В процессе ионной бомбардировки в материал вводятся чужие атомы, пик в распределении которых расположен за пиком повреждения., где концентрация внедренных атомов для потоков, эквивалентных 10 н/см , достигает нескольких атомарных процентов. Этот эффект не имеет последствий в случае облучения собственными ионами мишени, но возможно изменение в химическом составе, когда сорт падающих ионов отличается от сорта ионов мишени. Изменение химического состава в процессе ионного облучения наблюдается в сталях и вообще в сплавах. Следует отметить, что даже бомбардировка собственными ионами представляет собой введение дополнительных межузельных атомов, влияние которых возрастает с уменьшением дислокационной плотности и числа смещений на один внедренный атом (число смещений на один внедренный атом не должно быть меньше 100, иначе необходимо учитывать дополнительное количество межузельных атомов). Влияние внедренных атомов на распухание предполагается наиболее эффективным при температуре максимума распухания [231.  [c.119]

Приведем еще один пример. А. А. Силин и Е. А. Духовский показали, что в процессе облучения полимеров электронами или атомами гелия можно получить условия, при которых внешнее трение возрастает в несколько раз (например, при трении фторопласта по стали), или практически снижается до нуля (при трении полиэтилена по стали). В первом случае этот эффект наблюдается при облучении электронами, во втором— при облучении быстрыми атомами гелия.  [c.90]

Присутствие в воде молекулярного водорода оказывает слабое влияние на размер общей коррозии нержавеющих сталей, находящихся за пределами активной зоны реактора. Вместе с тем введение в циркуляционный контур реакторной установки водорода может существенно уменьшить содержание в воде продуктов коррозии. Подобный эффект связан, очевидно, с образованием при облучении аммиака из водорода и азота и уменьшением концентрации кислорода и других продуктов радиолиза с окислительными свойствами.  [c.288]


Кроме воздействия на пластические свойства и предел ползучести скопления вакансий, возникающих при облучении быстрыми нейтронами, могут вызывать довольно значительное увеличение объема [5] при образовании вакансионных пор, которые можно наблюдать с помощью электронного микроскопа. На рис. 8.2 показано увеличение объема, которое наблюдалось в аустенитной стали 316 и сплавах типа PE Q. Этот эффект можно воспроизвести в ускорителях, и если допустить, что эффекты от обоих видов облучения одинаковы, то при эквивалентном числе смещений на 1 атом можно сделать выводы о распухании материалов активно зоны реакторов на быстрых нейтронах. На рис. 8.3 показана зависимость увеличения объема от температуры для образцов, облученных в ускорителях. Холоднодеформированный материал менее склонен к распуханию, чем отожженный, вероятно, вследствие ограничивающего действия закрепленных дислокаций на переме-  [c.95]

Эффект ВТРО выражается в снижении длительной пластичности и прочности и в уменьшении относительного удлинения при кратковременных испытаниях при температуре выше 600 °С (табл. 8.47, рис. 8.3). ВТРО характеризуется межзеренным хрупким разрушением, проявляется после инкубационной дозы F = 10 —10 нейтр/м в широком интервале температур облучения, чувствительно к тепловым нейтронам, не устраняется отжигом. Температура начала охрупчивания снижается с ростом флюенса (рис. 8.3, кривая 3), отсутствует корреляция с кратковременной прочностью. Возможные причины ВТРО необратимое относительное разупрочнение границ зерен в результате радиационного старения, радиационно-стимулированной зернограничной сегрегации вредных примесей (Р, S, РЬ, Bi, As, Sn, Sb, N, О, Н) и образования на границах газовых пузырьков трансмутантных гелия и водорода. ВТРО усиливается с увеличением флюенса и температуры испытания, содержания никеля и вредных примесей, в дисперсионно-твердеющих сталях и никелевых сплавах ослабляется предварительной холодной пластической деформацией, термомеханической обработкой, резким измельчением зерен, легированием W, Мо, Nb, Ti, В.  [c.343]

Положительное влияние ионного легирования азотом и бором на износостойкость стали, никеля, титана, сплава Ti — 6А1 — 4V в условиях эрозионного изнашивания отмечается в работе [158]. Особенно большой эффект наблюдается после старения облученных материалов и связывается с упрочнением поверхности мелкодисперсными выделениями типа нитридов и боридов.  [c.95]

Ионная имплантация рабочих поверхностей режущего инструмента используется для упрочнения поверхности, как быстрорежущих сталей, так и твердых сплавов. В основе ионной имплантации (легирования) тонких приповерхностных слоев инструмента лежит облучение в вакууме пучком ионов газа или металла, ускоренных до энергии 10 ... 10 эВ, в результате чего происходит внедрение в поверхность ионов и атомов легирующего вещества (титана, хрома, азота и др.). Эффект упрочнения поверхности инструмента достигается как вследствие роста плотности дефектов кристаллического строения материала, закрепления этих дефектов атомами легирующих элементов, так и вследствие формирования дополнительного числа мелкодисперсных карбидных, нитридных и интерметаллических структур. Метод является универсальным по спектру легирующих примесей, обрабатываемых материалов и диапазону концентраций примеси в легированном слое инструментального материала. Кроме того, имплантируемый слой не изменяет размеров режущего инструмента и не может отслаиваться, в отличие от покрытий. Наиболее важными параметрами процесса ионной имплантации являются энергия внедрения (кэБ), доза облучения (ион/см ) и плотность тока (мкА/см ).  [c.105]

Более того, благодаря известному эффекту влияния размера зерна на способность к сколу мягких сталей при статических испытаниях [8], величина Фр должна уменьшаться с увеличением размера зерна материала. Отсюда сразу видно, почему распространение разрушения отрывом так облегчено при относительно высоких температурах в описываемых испытаниях и, кроме того, почему размер зерна оказывал такое заметное влияние. Однако следует отметить, что результаты, приведенные в этой статье, не будут точно отражать поведение типичных мягких сталей, испытанных при тех же температурах, если не проведено предварительное охрупчивание последних, например нейтронным облучением или деформационным старением, с тем, чтобы создать условия, предпочтительные для разрушения сколом, по сравнению с разрушением путем пластического разрыва.  [c.149]


ПЛОТНОСТЬ дислокаций и других дефектов и их распределение в объеме. Так, предварительная деформация образцов меди заметно влияет на скорость радиационного повреждения и концентрацию точечных дефектов [381, а следовательно, и на величину предела текучести. Изменение предела текучести стали типа 304 после облучения нейтронами до дозы 6 10 н/см в отожженном состоянии достигает 400%, а после холодной деформации — лишь 70% [9]. В качестве примера на рис. 20 приведены типичные зависимости предела текучести облученных сталей 1Х18Н10Т и ОХ16Н15МЗБ от степени предварительной прокатки [40]. Видно, что величина изменений предела текучести существенно зависит от степени деформации, интегрального потока облучения и химического состава сталей. Упрочнение после облучения наблюдается для закаленного и деформированного состояний. При этом максимальный эффект радиационного упрочнения отмечается после деформации примерно до 20%. Сильно деформированная сталь после облучения имеет меньшие прочностные характеристики по сравнению с соответствующими свойствами стали до облучения. Увеличение интегрального потока облучения повышает прочностные свойства сталей. При этом изменение свойств в процессе облучения деформированных сталей при 450—500° С до 2,6 10- н/см в большей степени связано с термическим воздействием, чем с радиационным. Изменение свойств сталей после облучения потоком 1 10 н/см (1060) обусловлено для слабодеформиро-ванных сталей радиационным воздействием, для деформированных до 30% и выше — термическим воздействием под облучением (процессами возврата и рекристаллизации).  [c.77]

Из данных рис. 388 следует, что когда температура испытания невысока, т. е. ниже температур рекристаллизации и возврата, наблюдается упрочняющий эффект облучения. При более высоких температурах облучение оказывает отрицательное влияние на механические свойства при высоких температурах, т. е. на жаропрочность. На рис. 389 показано изменение свойств стали 1Х18Н9Т с температурой испытания до и после облучения.  [c.696]

Необходимость получения значительно более прочных материалов, чем ныне известные (сейчас уже имеются стали, правда, получаемые пока в лабораториях, с прочностью до 300—400 кПмм ), заставила искать новые пути повышения прочности. К числу их относятся термомеханическая обработка, представляющая собой последовательное сочетание термичёской обработки с холодной деформацией металла фазовый наклеп, в котором используется свойство увеличения объема, занимаемого металлом, при некоторых фазовых превращениях (например, в железе), для деформации внешних слоев под влиянием увеличивающейся в объеме сердцевины магнитная обработка (комбинируется с термомеханической), состоящая в использовании эффекта (правда, весьма незначительного) изменения объема при намагничивании Ре облучение ядерными частицами. Технология термомеханической обработки сложна, но она позволяет получать мартенснтную структуру не в пределах  [c.296]

Для рассматриваемых материалов диапазон изменения этих переменных не так велик по абсолютной величине, но относительное влияние может отличаться в 5 раз. В дополнение эти эффекты будут изменяться со временем экспозиции. Для трубок парогенератора это время составляет 30 и более лет, а для оболочек твэлов — порядка от 3 до 5 лет. В рассмотренный список переменных не включено влияние облучения и теплопередачи, существенное для правильной оценки реакторных материалов. Специфическое действие радиации было изучено лишь в немногих аспектах. Определенных данных не было получено, однако испытания не выявили и значительных эффектов [65]. В одной серии испытаний при 315° С и pH 8ч-9,5 (NH3) скорость коррозии нержавеющей стали типа 304 была 10 мгЦдм -мес) во внереакторных условиях и 5 мг1 дм мес) в реакторе. Для ин-конеля-600 соответствующие данные были 30 и 20 мг)(дм мес).  [c.265]

Вероятно, наиболее значительное воздействие на материалы оказывают ядерные превращения основных и легирующих элементов при взаимодействии их с тепловыми нейтронами. При этом больщннство эффектов связано с появлением гелия, образующегося при взаимодействии нейтронов с ядрами °В, или при реакции, в которой Ni сначала превращается в Ni, затем в результате реакции (п, а) превращается в Ре и гелий. Реакция на ядрах бора существенна при относительно малых дозах облучения, так как имеет высокое сечение захвата нейтронов и поэтому быстро выгорает, а реакция на ядрах никеля существенна при очень высоких дозах, так как образование гелия пропорционально квадрату флюенса нейтронов. Рис. 8.4 иллюстрирует изменение числа атомов гелия на 1г никеля с флюенсом тепловых нейтронов. При содержании бора 2-10 % это число составляет l,6 10 (в естественном боре 20% изотопа Б). Бор в количестве 2-10 —5-10 2% добавляют к некоторым аустенитным сталям для улучшения их свойств, где обычно он концентрируется по границам зерен. При флюенсах тепловых нейтронов 3-1№4 нейтр/см гелий, получающийся при ядерных реакциях В, является преобладающим, но при более высоких флюенсах количество гелия, образовавшегося по реакции (и, а) на ядрах никеля, далеко превосходит его. Однако гелий, получаемый на ядрах никеля, первоначально диспергирован по всему материалу и только при температуре >750° С он мигрирует к границам зерен. Действие гелия, полученного таким образом, хотя и недостаточно для уменьшения пластичности, приводящего к разрушению изделия, должно учитываться в расчетах. Уменьшение пластичности малозаметно до концентрации гелия 10 % при температуре <750° С. Более заметен этот эффект для таких сплавов, как Р516, которые содержат до 5-10 7о В и 40% Ni, хотя изготовляемые из них узлы не подвергаются значительному нагружению при высокой температуре в процессе эксплуатации тепловыделяющего элемента.  [c.97]

Обычно выбор материалов для контура водо-водяных реакторов, которые работают при максимальной температуре 300° С, делают между углеродистыми и низколегированными сталями или аустенитными нержавеющими сталями. Скорость коррозии этих материалов низкая для нержавеющей стали при оптимальных условиях она составляет 0,5 г/м в месяц или 0,0007 мм в год, в то время как для углеродистых и низколегированных сталей 1,5—3 г/м в месяц или 0,0023—0,005 мм в год. Поэтому нет особой необходимости уменьшать возникающие напряжения или улучшать герметичность в хорошо контролируемых системах. Однако значительные проблемы связаны с продуктами коррозии, которые циркулируют через реакторную систему и высаживаются на поверхность металла или вымываются с нее непрерывно или периодически в зависимости от условий работы. Эти продукты коррозии обычно присутствуют в виде изолированных частиц диаметром <1 мкм и представляют собой шпинель типа R3O4, где R — железо, никель и хром. Скорость накопления продуктов коррозии в больших реакторах может достигать 10 0 г/сут. Они могут выпадать в осадок в зонах, где нет движения теплоносителя или действуют большие градиенты давления и высокие скорости теплопереноса, и собираться на поверхности тепловыделяющих элементов, где они активируются. Осажденное вещество воздействует на активацию, гидравлику, теплоперенос и реактивность. Наиболее значительный эффект состоит в том, что они могут после облучения в активной зоне высаживаться на участках, которые плохо защищены от радиации или которые имеют лишь временную защиту и поэтому могут представлять опасность для обслуживающего персонала. Активации подвергается большинство элементов, входящих в состав стали. Но для реактора с длительным сроком службы наибольшую опасность представляет нуклид Со из-за большого периода полураспада и высокой у-ак-тивности. Поэтому необходимо уменьшатд количество продуктов коррозии и связанную с ней радиоактивность, сохраняя низкую скорость коррозии. Важно также при изготовлении контура реактора использовать материалы с минимальным содержанием кобальта. Стеллиты, которые содержат значительное количество кобальта, не должны контактировать с теплоносителем. Другие сплавы надо выбирать с учетом минимального содержания кобальта. Это особенно относится к никелевым рудам, обычно содержащим кобальт, который не всегда удается полностью удалить в процессе экстракции. Различные условия работы реакторов PWR и BWR требуют различных методов контроля коррозионных процессов.  [c.151]


Эффект НТРО аналогичен радиационному охрупчиванию (кроме прироста tр, так как эти стали нехладноломки) и упрочнению сталей перлитного класса, но в отличие от сталей перлитного класса он сохраняется до более высоких температур облучения и испытания (приблизительно до 600 °С) (рис. 8.3, табл. 8.44). Минимум относительного удлинения приходится на 300—350 °С. Менее склонны к НТРО стали крупнозернистые (1—3 баллы) и с повышенным содержанием никеля (20 % и более).  [c.343]

Радиационные эффекты не играют существенной роли и в случае других исследованных металлов. Так, на рис. 2 приведены анодные поляризационные кривые, измеренные по току потенциодинамическим методом на облученном (удельная активность 270 мкюри г) и необлученном образцах стали Х20Н20С5. Видно, что кривые обоих  [c.97]

Выполнение работы. В качестве образцов для окраски следует взять стальную трубку диаметром 20—30 мм и длиной 100—150 мм. Образцы для испытания покрытия на водостойкость и стойкость к влажному облучению вырезают из листовой стали 08 КП размером 150X70X1,0 мм. С учетом формы изделий грунтование и окрашивание следует проводить в электрическом поле высокого напряжения. В этом случае используется так называемый эффект обволакивания (рис. 42), когда распылитель находится с одной стороны и образец не вращается.  [c.185]

Имеется очень немного данных о влиянии радиации на коррозионное поведение металлов. Можно ожидать, что влияние радиа-ции окажется аналогичным эффекту холодной обработки с той только разницей, что в первом случае в среде могут появиться некоторые химические соединения (например, НЫОд или НзОа), оказывающие вторичное влияние на коррозию. В соответствии с этим металлы, у которых скорость коррозии контролируется диффузией кислорода, не должны заметно изменять коррозионное поведение после облучения. С другой стороны, в кислотах у облученной стали (но не у чистого железа) будет, по-видимому, наблюдаться повышение скорости коррозии. Это влияние должно быть больше, чем у облученного никеля, который отличается малой чувствительностью к холодной деформации. Аустенитные нержавеющие стали, например сталь с 25% Сг и 20% N1 (типа 310), становятся более чувствительными к коррозионному растрескиванию после холодной деформации. Поэтому у них можно ожидать повышения склонности к растрескиванию после облучения. Однако данные, полученные Куппом [33] на образцах из нержавеющих сталей типа 304 и 308 (см. табл. 17), свидетельствуют об отсутствии какого-либо влияния радиации на их коррозионное растрескивание в кипящем Mg l2. Чтобы прийти к определенному заключению в этом вопросе, необходимо большее количество данных.  [c.119]

В дальнейшем, с развитием реакто-ростроения (см. Ядерный реактор), ускорительной техники и производства радиоактивных нуклидов, появились новые мощные источники излучения, в т. ч. и отличного от рентгеновских и 7-лучей. Это потоки нейтронов, ускоренных эл-нов, позитронов и тяжёлых заряж. ч-ц. Применения Д. распространились на службу радиац. безопасности, радиобиологию, радиац. химию, яд. физику и радиац. технологию. Знание поглощённой энергии стало необходимо не только для воды и биол. ткани воздух уже не мог рассматриваться как модель облучаемой среды. В этой связи в Д. утвердилось понятие поглощённой дозы как универсальной величины, применимой ко всем видам ионизирующего излучения и ко всем средам. Однако при равных поглощённых дозах воздействие излучения зависит также от его вида и др. хар-к— качества излучения. Количеств, хар-кой качества вначале служила ср. плотность ионизации, впоследствии уточнённая, как линейная передача энергии (ЛПЭ). Влияние ЛПЭ на радиац. эффекты наиболее подробно было исследовано в радиобиологии, где изучалась зависимость относительной биологической эффективности от ЛПЭ. Применительно к хронич. облучению людей (для обеспечения радиац. безопасности и нормирования условий труда) регламентиров. зависимость такого рода — зависимость коэфф. качества излучения от ЛПЭ.  [c.181]


Смотреть страницы где упоминается термин Стали Эффекты облучения : [c.90]    [c.37]    [c.42]    [c.95]   
Машиностроение энциклопедия ТомII-2 Стали чугуны РазделII Материалы в машиностроении (2001) -- [ c.314 ]



ПОИСК



Облучение

Облученность



© 2025 Mash-xxl.info Реклама на сайте