Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модулирование

В оптико-механических ЧА для регистрации изображения используется модулированный по яркости световой луч, сканирующий по светочувствительной бумаге. Из-за сложности обработки носителя, его высокой стои-  [c.49]

При проектировании систем, в которых информация представлена в виде огибающей высокочастотных колебаний, возможны два способа введения переменных в модели. При первом способе несущей переменные изображают высокочастотные модулированные колебания. При анализе приходится имитировать поведение объекта в течение большого числа периодов несущей, что зачастую делает неприемлемо крупными затраты машинного времени. При втором способе огибающей переменные отображают огибающие высокочастотных колебаний. Отражение только низкочастотной огибающей существенно ускоряет вычисления, однако построение моделей может оказаться затруднительным.  [c.188]


В основе современного понимания проводимости металлов лежит идея Блоха [4, 5], что свободные электроны проходят через металл как плоские волны, модулированные некоторой функцией с периодом, равным периоду решетки. Это позволяет преодолеть противоречия простой теории электронного газа, согласно которой атомы решетки сами должны являться главными центрами рассеяния электронов проводимости В результате длина свободного пробега может достигать нескольких миллиметров, что и наблюдается при низких температурах в особо чистых металлах. Сопротивление металлов, согласно теории Блоха, обусловлено только неидеальностью решетки. Наличие примесных атомов, точечных дефектов и границ зерен приводит к дополнительному рассеянию и, следовательно, к увели-  [c.189]

Полученное выражение (2.24) для сложной волны можно приближенно считать уравнением монохроматической волны с частотой 0)1, волновым числом ki и медленно меняющейся (модулированной) амплитудой 2 о Нели такой модулированный по амплитуде импульс принимается спектральным прибором, то он будет регистрировать две частоты oi и СО2.  [c.29]

С колебательного контура приемника модулированные колеба-  [c.254]

Следовательно, С(г, t) является модулированной амплитудой этой группы волн (огибающей волнового пакета). Скорость распространения огибающей мы и будем называть групповой скоростью U. Согласно (1.27), амплитуда С(г, t) задается выражением  [c.48]

Такой световод напоминает (см. 1.2) волновод, широко используемый в технике СВЧ. Этот способ транспортировки светового потока применяется в волоконной оптике для передачи информации модулированным световым сигналом. Однако при этом возникли существенные трудности и лишь в последние годы были решены проблемы, основанные на использовании весьма чистых и однородных волокон. Дело в том, что наличие в стеклянном волокне мельчайших пузырьков воздуха, трещин, пылинок и т.д. приводит к рассеянию световых волн и резкому возрастанию потерь энергии, нацело исключающих возможность применения системы таких волокон для целей оптической дальней связи. В результате интенсивной исследовательской работы в 70-е годы была разработана технология получения оптических волокон очень высокого качества. Потери энергии в таких световодах оказываются того же порядка, что и затухание электрического импульса, распространяющегося в металлическом проводнике. Можно ожидать, что несомненная выгода передачи информации на оптических частотах будет реализована не только в условиях космоса, где не играют роли помехи, неизбежно возникающие при распространении свободной световой волны в приземной атмосфере.  [c.93]


Пример хаотически модулированного колебания  [c.186]

Для повышения чувствительности иногда наполняют колбу фотоэлемента каким-либо газом, не вступающим в реакцию с веществом фотокатода. В таких газонаполненных фотоэлементах выбитые из катода электроны при своем движении к аноду ионизируют атомы г аза. Образующиеся в газе ионы и электроны движутся к электродам фотоэлемента, заметно увеличивая исходный фототок. Чувствительность таких устройств велика (она достигает 500 мкА/лм), но их вольт-амперная характеристика имеет более сложный вид, чем обычная зависимость силы фототока от приложенной разности потенциалов, и часто не соблюдается пропорциональность силы фототока и светового потока. Другим недостатком газонаполненных фотоэлементов является их инерционность, приводящая к искажению фронта регистрируемого сигнала и ограничивающая возможность измерения модулированных и быстроизменяющихся световых потоков. При частоте модуляции в несколько килогерц обычно уже невозможно использование газонаполненных фотоэлементов.  [c.437]

Если отношение Дш/ш мало по сравнению с единицей (Дш/со < 1), то в результате сложения этих двух колебаний получается модулированное колебание, основная частота которого приближенно равна со, а амплитуда относительно медленно изменяется с частотой Дш/2.  [c.143]

Дополнение 3. Модулирование параметров осциллятора (параметрическое усиление)  [c.239]

Применение индикатора модулированного света. Свет от источника 5 отражается зеркалом М на индикатор — фотоэлемент D (рис. 10.16). Интенсивность света от источника модулируется с помощью радиочастотного генератора с этой частотой и этим же прибором модулируется также чувствительность фотоэлемента. Для того чтобы сила тока фотоэлемента была максимальной, необходимо, чтобы свет максимальной интенсивности попал на этот фотоэлемент точно в момент его максимальной чувствительности. Это условие выполняется, если время, за которое свет проходит от S до D, равно целому числу периодов модуляции, производимой с частотой V, т. е. равно N/v, откуда следует  [c.321]

Указанное явление очень легко осуществить в акустическом опыте, где мы имеем дело с небольшими частотами. Если взять камертон с частотой 100 Гц, то достаточно модулировать по указанному закону силу его звука два раза в секунду, для того чтобы получить сложную волну, эквивалентную трем волнам с частотами 98, 100 и 102 Гц. В этом легко убедиться простым опытом. Поставим друг против друга два камертона (рис. 2.5), имеющих частоты 100 и 98 Гц (или 102 Гц). Они не настроены в унисон, и волны, испускаемые одним камертоном, не вызовут резонанса в другом. Но если, заставив звучать первый камертон, мы будем два раза в секунду вносить и убирать заслонку М, прикрывающую его резонансный ящик, т. е. будем модулировать дважды в секунду силу его звука, то модулированная волна будет эквивалентна (приблизительно) совокупности трех волн с частотами 100, 98 и 102 Гц и второй камертон будет отзываться на одну из них. Опыт этого рода удается без всяких затруднений.  [c.36]

Уменьшение видимости полос при интерференции немонохроматических пучков объяснялось в 21 иным способом, а именно, предполагалось, что они являются суперпозицией монохроматических пучков с различными частотами (или длинами волн). Естественно возникает вопрос о взаимоотношении спектрального подхода, изложенного в 21, и временного подхода, использующегося в данном параграфе. Для выяснения этого вопроса напомним, что строго гармоническое (монохроматическое) колебание, по самому своему определению, должно происходить бесконечно долго. Если колебание следует гармоническому закону в течение ограниченного промежутка времени, по истечении которого изменяются его амплитуда, частота или фаза (волновой цуг), то это модулированное колебание можно представить в виде суммы монохроматических колебаний с различными частотами, амплитудами и фазами. Но такое разложение волновых цугов на монохроматические составляющие и дает основу для представления об интерференции немонохроматических пучков. Итак, спектральный и временной подходы к анализу интерференции оказываются разными способами рассуждений об одном и том же явлении, —нарушении когерентности колебаний ).  [c.99]

Для теоретического вычисления функции С (т) воспользуемся моделью амплитудно модулированных волновых цугов, т. е. будем считать, что в течение интервалов времени с длительностью Т интенсивность I (/) сохраняет постоянное значение, а по истечении времени Т скачком изменяется на случайную величину. Выполняя выкладки по схеме упражнения 21, относящейся к модели амплитудно модулированных цугов, можно получить  [c.112]


Так как указанные изменения в поляризуемости, обусловленные колебаниями атомов а молекуле, имеют периодический характер, то, следовательно, и интенсивность рассеиваемого света меняется периодически с частотой этих внутримолекулярных колебаний v Следовательно, рассеянный свет, частота которого должна быть равна частоте падающего света vo, является модулированным светом с частотой модуляции V/, что соответствует свету с измененной частотой Vo vг (см. Введение). Таким образом, этот вид рассеяния света должен сопровождаться изменением частоты падающего света наряду со светом начальной частоты должны появляться линии измененной частоты (спутники). Частота рассеянного света комбинируется, таким образом, из частоты падающего света и частоты внутримолекулярного (обычно инфракрасного) колебания. Отсюда название — комбинационное рассеяние.  [c.605]

Другая возможность повышения мощности лазерного импульса основана на совершенно иных соображениях. Мощность импульса пропорциональна его энергии й, деленной на длительность импульса Ат. Поэтому, если при данном значении энергии импульса сократить его длительность, то мощность импульса повысится. Изложим один из методов сокращения длительности импульса излучения, получивший название метода модулированной добротности.  [c.789]

Рис. 40.9. Схема лазера с модулированной добротностью. Рис. 40.9. <a href="/info/565190">Схема лазера</a> с модулированной добротностью.
Как нетрудно понять, изменение ориентации призмы изменяет добротность оптического резонатора. Поэтому описанный метод формирования коротких мощных импульсов получил наименование модуляции добротности оптического резонатора. Лазеры, работающие в таком режиме, называются лазерами с модулированной добротностью. Соответственно условия работы лазера с неизменной во времени добротностью называют режимом свободной генерации.  [c.790]

Из сказанного следует, что в случае импульсных лазеров спектральная ширина компонент в спектре их излучения никак не меньше величины, обратной длительности импульса. Для лазеров с модулированной добротностью, например, Т х 10 с, и бсо не менее 10 .  [c.800]

Ф. Блохом было доказано, что волновые функции, являющиеся решениями одноэлектронного уравнения Шредингера с периодическим потенциалом, имеющим период решетки, представляют собой плоские волны, модулированные некоторой функцией с периодичностью решетки, т. е.  [c.215]

Модулированные плоские волны являются собственными состояниями только в том случае, когда потенциал чисто периодический. В реальных кристаллах имеются переходы частиц между собственными состояниями, вызванные отклонениями потенциала от строгой периодичности. Эти процессы, устанавливают равновесие в тр время как электрическое ноле F и градиент температуры VT нарушают его. Уравнение Больцмана, которое является условием того, что действительная вероятность заполнения состояния / — постоянна, принимает следующий вид  [c.258]

Подобные колебания называются модулированными Q называется угловой частотой модуляции, а д = 2я/й — периодом модуляции. Так как период колебаний Т и пери-  [c.618]

Легко усмотреть связь между сделанным выводом и теми представлениями о модулированных колебаниях, которые были развиты выше. (Повторяющиеся один за другим отрезки синусоид являются одним из случаев модулированных колебаний.)  [c.627]

Чем быстрее следуют друг за другом отрезки синусоид, тем выше Q] (и все Q ) и тем более широкую полосу частот занимает спектр модулированного колебания. Соответственно тем выше должно быть затухание колебательной системы, чтобы она весь спектр модулированного колебания воспроизводила равномерно и не искажала формы модулированного колебания.  [c.627]

Для абсолютной шумовой термометрии измерение Д/ оказывается затруднительным и поэтому предпочтение отдается измерению частоты. Для этого сигнал с джозефсоновского контакта, модулированный по частоте напряжением на сопротивлении R, регистрируется частотомером. В течение времени т выполняется п циклов измерений и определяется среднеквадра-  [c.121]

Модулированная амплитуда характеризует группу волн. Поэтому распространение импульса можно характеризовать скоростью переноса определенного значения модулироваипой амплитуды. Эту скорость называют гругшовой скоростью волн. Так как на опыте удобно регистрировать максимальную амплитуду, то под групповой скоростью понимают скорость перемещения максимума амплитуды волны. Следовательно, групповая скорость определяется из условия  [c.29]

Таким образом, приходим к выводу для регистрации и восстановления волны, дифрагированной предметом (следовательно, про-модулированной как по фазе, так и по амилитуде), необходилю заставить ее проинтерферировать с когерентной опорной волной с известной фазой, затем с помощью опорной волны извлечь из общей интерференционной картины предметную волну. Это н есть идея  [c.205]

Для понимания интерференции и дифракции электромагнитной волны вводятся квааимонохроматические волны ("хаотически модулированные колебания" ). При введении этих понятий законы возникновения и распространения электромагнитных волн дополняют условиями обрыва колебаний оптических электронов в атоме и другими причинами, onpeдeляюn ими время когерентности. В рамках этой схемы обосновывается когерентность колебаний для точечных источников свети в пределах одного цуга волн, а затем выявляются условия пространственной когерентности, при которых может наблюдаться стационарная интерференционная картина от реальных источников.  [c.7]


В этом соотношеьп1и амплитуда Eo(t) и фаза tp(f) не постоянны, а относительно медленно (по сравнению с основными колебагги ями на несущей частоте (и) изменяются во времени. Другими словами, квазимонохроматическая волна имеет модулированную амплитуду и фазу. При описании некоторых оптических явлений можно пренебречь изменением о( ) и (p(f) и исследовать распространение монохроматической волны, т. е. считать Eq и ф постоянными. В других случаях необходимо допустить, что Eo(t) и ф( ) остаются постоянными лишь в течение известного промежутка времени х, длительность которого определяется физическими процессами в источнике свега  [c.38]

Очевидно, что монохроматическая волна не может быть непосредственно использованной для передачи информации — она никогда не начиналась, никогда не кончается и любой приемник покажет К д- onst. Для того чтобы стало возможным использовать монохроматическую волну в этих целях, ее нужно закодировать, т. е. создать сигнал, который после регистрации и расшифровки будет содержать необходимую информацию. Наиболее простым способом кодирования является модуляция амплитуды волны, которая может осуществляться различными способами (в том числе н механическим прерыванием излучения по определенному закону). При этом возникает амплитудно-модулированж е колебание E(t) =-= Eq(1 ) oa(w< — <р), где Eo(t) — медленно изменяющаяся амплитуда (например, звуковой частоты (I) 10 Гц, в то время как несуп ая частота относится к оптическому диапазону 10 Гц). Модулированный сигнал регистрируется приемником света и после высоко-  [c.43]

I < Ei + 2)2 > учтем, что все высокочастотные колебания (частоты 2й11, 2со2, (ю1 + 2) усреднятся приемником света и переменная часть фототока сигнал биений) будет представлена модулированным сигналом с разностной частотой  [c.395]

Рис. 10.17. Измерение с Вергстрандом осно.1 вывается на методе фазочувствительного ин дикатора и похоже на опыт, иллюстрируемый приводимыми здесь графиками (см. рис. 10.16). Интенсивность света, поступающего от источника в ячейку Керра, постоянна а), но свет, выходящий из ячейки Керра, модулирован б). Передвигая зеркало М, можно изменять время прохождения светом пути от К до D, так что свет поступает в D, как показано на оис. 10.17 (в). Есл мы чуть-чуть отодвинем М, свет поступит позднее (г). Чем дальше отодвинуто М, тем еще позднее поступит свет д ж). Теперь предположим, что чувствительность индикатора модулируется, как показано здесь (э). Сигнал от индикатора возникает только тогда, когда этот индикатор обладает чувствительностью и при этом на него поступает свет. В результате мы получаем график а ) чувствительности индикатора к световому сиг-> налу а). Для светового сигнала б) мы имеем падающий свет и чувствительность индикатора совпадают по фазе (б ). Для светового сигнала в) имеем в ). Для светового сигнала г) разность фаз между падающ-им светом и чувствительностью индикатора равна 180 , т. е. их фазы противоположны, и поэтому сигнал индикатора обращается в нуль (г ). Для светового сигнала 5) имеем д ). Когда мы непрерывно изменяем положение зеркала М, получается следующий график среднего по времени величины сигнала индикатора (е ). Расстояние между двумя соседними максимумами на этой кривой соответствует изменению длины пути света на 2Д1. вызванному перемещением зеркала М 2ДЬс= = l/Vp q следовательно, с 2 где Vp - Рис. 10.17. Измерение с Вергстрандом осно.1 вывается на методе фазочувствительного ин дикатора и похоже на опыт, иллюстрируемый приводимыми здесь графиками (см. рис. 10.16). <a href="/info/10152">Интенсивность света</a>, поступающего от источника в <a href="/info/10389">ячейку Керра</a>, постоянна а), но свет, выходящий из <a href="/info/10389">ячейки Керра</a>, модулирован б). Передвигая зеркало М, можно изменять время прохождения светом пути от К до D, так что свет поступает в D, как показано на оис. 10.17 (в). Есл мы чуть-чуть отодвинем М, свет поступит позднее (г). Чем дальше отодвинуто М, тем еще позднее поступит свет д ж). Теперь предположим, что чувствительность индикатора модулируется, как показано здесь (э). Сигнал от индикатора возникает только тогда, когда этот индикатор обладает чувствительностью и при этом на него поступает свет. В результате мы получаем график а ) чувствительности индикатора к световому сиг-> налу а). Для светового сигнала б) мы имеем падающий свет и чувствительность индикатора совпадают по фазе (б ). Для светового сигнала в) имеем в ). Для светового сигнала г) разность фаз между падающ-им светом и чувствительностью индикатора равна 180 , т. е. их фазы противоположны, и поэтому сигнал индикатора обращается в нуль (г ). Для светового сигнала 5) имеем д ). Когда мы непрерывно изменяем положение зеркала М, получается следующий график среднего по времени величины сигнала индикатора (е ). Расстояние между двумя соседними максимумами на этой кривой соответствует изменению <a href="/info/9922">длины пути</a> света на 2Д1. вызванному перемещением зеркала М 2ДЬс= = l/Vp q следовательно, с 2 где Vp -
Фазотрон используется для ускорения тяжелых частиц, работает с постоянным управляющим магнитным гюлем, но с переменной (модулированной) частотой ускоряющего высокочастотного поля.  [c.63]

Подчеркнем, что значения интенсивности возбуждающего излучения, необходимые для отчетливого проявления усиления, достижимы лишь с мощными квантовыми генераторами. Поэтому ВКР экспериментально было обнаружено лишь в 1962 г. (Вудбёри, Нг) после создания лазеров с модулированной добротностью, хотя теоретически возможность усиления рассеянного излучения была ясна в 30-х годах. Однако ей не придавали серьезного значения,  [c.855]

Почему в опыте с двумя камертонами мы говорим, что модулированное колебание приблиаитсльноУэквивалентно трем колебаниям, а в разобранном  [c.860]

Таким образом, спектр рассматриваемого нростепшего модулированного колебания содержит только три смежные гармоники, лежащие в области высоких частот (очень далеко от частоты модуляции Q). ( редняя из частот этих гармоник, совпадающая с частотой модулируемого колебания о), называется несущей частотой, соответствующая составляющая спектра — 1[есущим колебанием, а частоты (л — Й, О) Q, лежащие по обе стороны от несущей, называются боковыми частотами (а соответствующие составляющие спектра — боковыми колебаниями).  [c.619]


Смотреть страницы где упоминается термин Модулирование : [c.187]    [c.71]    [c.151]    [c.47]    [c.397]    [c.339]    [c.488]    [c.812]    [c.860]    [c.922]    [c.123]    [c.619]    [c.619]   
Машиностроение энциклопедия ТомI-5 Стандартизация и сертификация в машиностроении РазделI Инженерные методы расчетов Изд2 (2002) -- [ c.446 ]



ПОИСК



Дополнение 3. Модулирование параметров осциллятора (параметрическое усиление)

Монтажное проектирование по методу модулирования



© 2025 Mash-xxl.info Реклама на сайте