Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушения деформационные усталостные

Таким образом, хотя уравнение (2.95) несомненно является дальнейшим развитием феноменологии усталостного разрушения, конкретный его вид недостаточно корректен по-видимому, для более-менее адекватной реальным усталостным процессам формулировки деформационно-силового критериального уравнения требуется хотя бы минимальное базирование на физических процессах, происходящих в материале при циклическом нагружении. В следующем разделе будет предпринята такая попытка.  [c.134]


В настоящем разделе предпринята попытка сформулировать деформационно-силовой критерий зарождения усталостного разрушения применительно к ОЦК металлам, в частности к сталям перлитного класса, основываясь на некоторых физико-меха-нических представлениях о накоплении повреждений при усталости [74, 79, 85, 126]. Разрабатываемый подход позволит ответить на некоторые открытые вопросы в проблеме малоцикловой усталости материалов, в частности, касающиеся влияния на долговечность максимальных напряжений и нестационарности нагружения.  [c.136]

ДЕФОРМАЦИОННО-СИЛОВОЕ УРАВНЕНИЕ УСТАЛОСТНОГО РАЗРУШЕНИЯ  [c.139]

Анализ долговечности сварных узлов на стадии образования усталостного разрушения может быть выполнен на основе из-вестных деформационных критериев разрушения [141, 144, 147] или при использовании разработанного деформационно-силового критерия (см. раздел 2.3). Процедура расчета при этом аналогична анализу долговечности материала у вершины усталостной трещины, так как по сути трещина является острым геометрическим концентратором напряжений и деформаций. Расчет кинетики НДС в концентраторах напряжений в настоящее время проводится с использованием коэффициентов концентрации упругопластических деформаций и напряжений, процедура получения которых достаточно полно представлена в работах [141, 147]. В случае необходимости уточненного анализа НДС в концентраторе можно воспользоваться решением упругопластических задач с помощью МКЭ.  [c.268]

В настоящее пособие включен лишь ограниченный круг представлений в области сопротивления материалов усталостным и хрупким разрушениям, более близко примыкающих к соответствующим методам расчета, и испытания на прочность. Эти вопросы изложены главным образом на основе линейной механики, деформационных и вероятностных критериев разрушения. Этим изложением делается попытка кратко, применительно к особенностям курса сопротивления материалов, осветить ряд данных в области механики деформируемого тела, опубликованных в литературе, и в том числе полученных коллективом комплекса термопрочности Института машиноведения при участии автора.  [c.5]

Установление механических критериев усталостного разрушения, в связи с чем в процессе испытаний определяют силовые, деформационные и энергетические характеристики.  [c.8]

Для условий низкочастотного нагружения предложены деформационные критерии усталостного разрушения 54]  [c.241]

Предельные числа циклов на стадии образования трещин определяются на основе деформационно-кинетических критериев малоциклового и длительного циклического разрушения (уравнение (1.2.8)) линейным суммированием квазистатических и усталостных повреждений с учетом изменения циклических и односторонне накопленных деформаций по числу циклов и времени, а также изменения во времени располагаемой пластичности материала.  [c.44]


Учитывая отмеченную специфику деформирования нри термоусталостном нагружении, в работе [103] предлагается метод оценки термической прочности с позиций деформационно-кинетического критерия малоциклового разрушения [129, 162], экспериментально обоснованного в области повышенных и высоких температур при изотермических испытаниях материалов. Названный критерий, как отмечалось выше, описывает условия достижения предельного состояния по разрушению квазистатического и усталостного типов как для мягкого и жесткого, так и промежуточного между мягким и жестким характера нагружения, что охватывает особенности нестационарного циклического деформирования, свойственные термоусталостным испытаниям.  [c.49]

Важным методическим моментом расчета повреждений в форме деформационно-кинетического критерия малоцикловой прочности является вопрос о возможности использования известных корреляционных зависимостей характеристик сопротивления усталостному разрушению от статической и длительной пластичности материала. В исследовательских работах, связанных с обоснованием применимости критерия, необходимо получать прямые опытные данные путем постановки базовых экспериментов в соответствующем диапазоне условий (температурный режим, частота и скорость деформирования, предельные базовые числа циклов и общая продолжительность статических и циклических испытаний). При наличии  [c.53]

Полученный комплекс базовых данных использован для расчета усталостных и длительных статических повреждений, накопленных материалом в процессе термоусталостных испытаний. Расчет повреждений осуществлен применительно к условиям деформирования в зоне разрушения, т. е. в месте образования шейки . Результаты вычислений в соответствии с деформационно-кинетическим критерием (уравнение (1.3.1)) представлены в табл. 1.3.1 и на рис. 1.3.8.  [c.54]

В условиях рассматриваемого типа нагружения проявляются особенности малоцикловой усталости, заключающиеся прежде всего, как отмечено выше, в возможности накопления в процессе циклических нагружений наряду с усталостными повреждениями и квазистатических. В указанном наиболее общем случае оценка накопления повреждений может быть выполнена в деформационной форме, что является традиционным для малоцикловой ветви кривой усталости [2—8] и обосновывается в ряде исследований также и для многоцикловой области [144, 210, 211], а расчет повреждений представляется возможным осуществить на основе деформационно-кинетических критериев разрушения.  [c.57]

Трощенко В. Т. Деформационные критерии усталостного разрушения металлов.— В кн. Прочность материалов и конструкций. Киев Наукова думка, 1975.  [c.288]

При высоких уровнях деформаций и напряжений плотность дислокаций росла очень интенсивно и описанные процессы деформационного старения не предотвращали достаточно быстрого накопления предельного искажения решетки, ведущего к усталостному разрушению.  [c.248]

ИССЛЕДОВАНИЕ ДЕФОРМАЦИОННЫХ И ЭНЕРГЕТИЧЕСКИХ КРИТЕРИЕВ УСТАЛОСТНОГО РАЗРУШЕНИЯ МЕТАЛЛОВ ПРИ МНОГОЦИКЛОВОМ НАГРУЖЕНИИ  [c.47]

Под деформационными и энергетическими критериями усталостного разрушения в данном случае подразумеваются критерии, связывающие закономерности усталостного разрушения металлов с циклическими деформациями и необратимо рассеянной энергией.  [c.47]

Цель исследования деформационных и энергетических критериев, как и любых других критериев усталостного разрушения,— разработка методов оценки усталостного повреждения металлов с учетом напряжений, числа циклов нагружения, вида напряженного состояния, конструктивно-технологических и эксплуатационных факторов и на их основе разработка расчетных и ускоренных методов определения характеристик усталости металлов.  [c.47]

Исследование циклических деформаций для установления деформационных критериев усталостного разрушения металлов особенно эффективно в области. малоцикловой усталости, когда в материале наблюдаются большие циклические пластические деформации.  [c.47]


Результаты исследования деформационных и энергетических критериев усталостного разрушения металлов, рассматриваемые ниже, основываются на обобщении результатов исследования закономерностей усталостного разрушения и неупругого деформирования широкого круга металлов различных классов. Это углеродистые, легированные, аустенитные стали, сплавы на основе меди, алюминия, никеля и чугуна — всего около 60 материалов отечественного и зарубежного производства.  [c.49]

Сопротивление образованию и развитию трещин малоциклового нагружения в общем случае зависит от циклических свойств металла, режима нагружения и размеров трещин. В работах [1—4] рассмотрены кинетические особенности процессов упругопластического деформирования и деформационные критерии малоциклового разрушения с учетом циклических свойств в связи с анализом условий образования трещин в зонах концентрации напряжений при комнатной температуре. Условия распространения трещин малоциклового разрушения при комнатной температуре с учетом кинетики пластических деформаций в их вершине изучались в работе [5]. В упомянутых работах показано, что долговечность на стадии образования трещин в зонах концентрации напряжений рассчитывается по величинам амплитуд и односторонне накапливав мых местных деформаций с использованием условия линейного суМ мирования квазистатических и усталостных малоцикловых повреждений. Скорости распространения трещин малоциклового нагружения и долговечность на стадии окончательного разрушения вычис ляются по величинам размахов коэффициентов интенсивности деформаций и предельной пластической деформации в вершине трещины.  [c.99]

Исследование циклического разрушения в упруго-пластической области, имеющего актуальное значение для энергетического, транспортного, строительного оборудования и ряда других отраслей, основывались прежде всего па изучении кинетики напряженного состояния по мере накопления числа циклов на основе свойств диаграмм циклического деформирования. Были установлены в силовом и деформационном выражении условия возникновения либо усталостного, либо квазистатического разрушения, предложены соответствующие схемы расчета для эластичного и жесткого нагружения. Показаны особенности влияния циклических пластических свойств на эффект концентрации напряжений для этого случая сопротивления усталостному разрушению. Применительно к циклическому деформированию от повторного нагрева и охлаждения малоцикловое термоусталостное разрушение бы.ло описано соответствующими кривыми усталости в деформационном выражении, полученными для данного температурного перепада, показана применимость критерия октаэдрических напряжений для плоского напряженного состояния в этом случае.  [c.42]

В низкоуглеродистых сталях и других деформационно стареющих материалах наблюдается четкий предел выносливости, т. е. ниже некоторого значения приложенного напряжения усталостная долговечность образцов неограниченно велика. Важность деформационного старения подтверждается так называемым эффектом тренировки образец в течение длительного времени подвергают циклическому нагружению при напряжениях ниже предела выносливости, после чего его усталостная долговечность существенно повышается благодаря увеличению напряжения течения в результате деформационного старения. Ранее считалось, что предел выносливости является характери-ристикой, отражающей сопротивление материала зарождению разрушения (т. е. зарождению усталостной трещины). В настоящее время взгляд на предел выносливости несколько трансформировался. Показано, что усталостная трещина может зарождаться и прорастать через поверхностные слои образца при напряжениях меньше предела выносливости, но не развивается в глубь образца и не приводит к разрушению [263, 423]. Таким образом, наличие предела выносливости не является следствием невозможности зарождения трещины, а скорее неспособности ее распространения в материале при данном уровне напряжений [152]. Данная закономерность позволяет связать предел выносливости с пороговым значением коэффициента интенсивности напряжений AKth, характеризующим отсутствие развития трещины при АК < А/Сгл- Указанный подход был нами использован при прогнозировании влияния асимметрии нагружения на предел выносливости. Подробное изложение полученных по данному вопросу результатов будет приведено в подразделе 4.1.4.  [c.128]

На основании полученного деформационно-силового уравнения усталостного разрушения (2.111) в гл. 4 выполнено моделирование кинетики усталостных макротрещин в перлитных сталях, в частности, рассмотрено влияние асимметрии нагружения на пороговое значение коэффициента интенсивности напряжений AKth-  [c.145]

Процесс малоциклового усталостщ)го разрушения ОЦК металлов может быть подразделен на три этапа множественное зарождение микротрещин на самых ранних стадиях циклического упругопластического деформирования, стабильное подрастание микротрещин за счет эмиссии и стока дислокаций в их вершины и, наконец, нестабильное развитие микротрещин до ближайших эффективных барьеров, которыми могут являться микронапряжения или границы деформационной субструктуры. Исходя из указанной схематизации усталостного разрушения ясно, что долговечность до зарождения макроразрушения определяется двумя параметрами НДС неупругой деформацией (точнее, размахом неупругой деформации в цикле) и максимальными напряжениями в цикле. Первый параметр определяет скорость стабильного роста микротрещины, а второй — ее критическую длину.  [c.148]


Использование ранее сформулированных представлений о влиянии деформационной субструктуры материала на критическое напряжение хрупкого разрушения S позволило дать физическую интерпретацию явления нестабильного (скачкообразного) роста усталостной трещины и соответственно разработат4> метод прогнозирования параметра Ки- Установлено, что скачкообразный рост усталостной трещины наступает в том случае, если микротрещины, нестабильно развивающиеся у ее вершины, не тормозятся деформационной субструктурой материала.  [c.265]

При циклических режимах нагружения длительно проработавших аппаратов металл подвергается деформационному старению. При этом изменяется дислокационная структура металла и перераспределяются примесные атомы (например, азота) в кристаллах. В результате старения металла повышаются пределы прочности сГв и текучести ат(сго2), значительно снижаются пластические характеристики (относительное удлинение 5 и сужение ц/). Металл становится более хрупким, и это приводит к ускорению усталостного разрушения. Поскольку в вершине дефектов всегда наблюдается концентрация деформаций, там и старение протекает быстрее.  [c.126]

Для исследований выбраны три конструкционных материала — сталь 45 и 15Х2МФ, алюминиевый сплав Д-16Т, обеспечивающие по своим циклическим свойствам получение характерных типов квазистатического, усталостного и смешанного разрушений. В деформационных терминах обоснована возможность использования практически во всех рассмотренных случаях правила линейного суммирования квазистатических ж усталостных повреждений.  [c.17]

Деформационная трактовка разрушения материалов при длительном циклическом нагружении используется и в работах [47, 48, 61]. Трактовка выполняется в форме, пригодной для оценки и усталостных, и квазистатических повреждений. Предлагается раздельно учитывать повр ежденйя от накопления односторонних пластических и знакопеременных деформаций, а также односто-роннцх и, знакоцеременных деформаций ползучести. Предполагается взаимное влияние на предельную деформационную способность материала усталостных и квазистатических повреждений указанного типа. Трактовка нуждается в уточнении способов определения компонент повреждений и достаточном экспериментальном обосновании.  [c.42]

Отмеченное показывает, что существует ряд предложений по методам оценки длительной циклической прочности, причем развиваемые в Институте машиноведения деформационно-кинетические критерии охватывают наиболее общий случай нагружения яри наличии как знакопеременных, так и односторонне накапливаемых деформаций, приводящих к усталостному, квазистатичес-кому и переходному характеру длительного циклического разрушения. Полученные в ГосНИИмашиноведения и ряде других организаций экспериментальные данные для различных условий нагружения на основных типах конструкционных материалов специального энергетического аппаратостроения в диапазоне ра бочих температур во всех случаях без исключения показали достаточное соответствие расчетам по критериальным зависимостям (1.2.8), (1.2.9).  [c.43]

Трактовка условий достижения предельного состояния по разрушению в форме деформационно-кинетического критерия предцояагает интерпретацию экспериментальных данных в виде зависимости суммарного повреждения от числа циклов до появления трещины. При этом для условий термоусталостных испытаний, которые, как было подчеркнуто, являются в общем случае нестационарными и сопровождаются накоплением не только усталостных, но и квазистатических повреждений, выражение результатов в широко используемой в настоящее время форме, когда производится построение зависимости циклической деформации (суммарной или необратимой) от долговечности, является недостаточно корректным. На рис. 1.3.7 представлены данные термоуста-лостных испытаний. Видно, что при использовании деформаций, получаемых в первом цикле нагружения, и деформаций, соответствующих 50%-ной долговечности образца, наблюдается кажущееся снижение сопротивления термоусталостному нагружению в два-три раза по сравнению с кривой усталости материала. Указанное является следствием неучета влияния в термоусталостных испытаниях квазистатических повреждений, роль которых возрастает по мере снижения долговечности образцов.  [c.55]

Микроструктурные исследования показали, что усталостное разрушение биметаллической композиции как при комнатной температуре, так и при 800°С имеет сложный характер — в отсутствие четко выраженного деформационного микрорельефа в науглероженной зоне стали Х18Н10Т, а также в обезуглероженной зоне основного металла интенсивное дробление зерен и разрыхление поверхности сопровождаются образованием многочисленных очагов разрушения. При этом дробление происходит раньше, чем начинается развитие главной транскристаллической или межкристаллической трещины, приводящей к потере несущей способности слоя стали СтЗ. Межслойная поверхность раздела служит эффективным барьером для усталостной трещины,, так как напряженное состояние в вершине движущейся трещины резко изменяется. Магистральная трещина распространяется в плакирующем слое а при слиянии ее с трещиной материала основы образец ломается.  [c.225]

В Институте проблем прочности АН УССР уделяется большое внимание разработке экспериментальных средств исследования усталости и неупругости металлов с целью использования их для разработки деформационных и энергетических критериев многоциклового усталостного разрушения.  [c.47]

В статье дан краткий анализ результатов исследования зарождения и развития усталостных трещин в металлах при многоцикловом нагружении, полученных в Институте проблем прочности АН УССР. Показано, что об интенсивности накопления усталостного повреждения па стадии зарождения усталостной трещины можно судить по величине неупругой циклической деформации. Приведены деформационные и энергетические критерии зарождения трещин рассмотрены закономерности развития усталостных трещин п обоснована целесообразность использования в расчетах характеристик вязкости разрушения при циклическом нагружении.  [c.420]

Исследование деформационных и энергетических критериев усталостного разрушения металлов при многоцикловом нагружении / Хамаза Л. А., Коваль Ю. И., Цыбанев Г. В.— В кн. Механическая усталость металлов Материалы VI Меш-дунар. коллоквиума. Киев Наук, думка, 1983, с. 47—54.  [c.421]

Рассматривается автоматизированная система для исследования усталости и неупругооти металлов при многоцикловом нагружении. Обобщены результаты исследования неупругого деформирования и необратимого рассеяния энергии в большой группе металлов различных классов в процессе их испытания на усталость, проанализированы основные деформационные и энергетические критерии усталостного разрушения этих металлов.  [c.421]

На ошовании результатов испытания образцов из жаропрочньа сплавов при термоусталосгном нагружении в соответствии с деформационно-кинетическим критерием прочности для зоны разрушения ( шейки ) рассчитаны доли усталостного и квазистатического повреждений ( шс. 2.24, а к б). Для исследуемых сплавов характерно увеличение доли усталостного повреждения и одновременное уменьшение (практически до нуля) доли квазистатического повреждения при увеличении долговечности.  [c.44]

Для указанных условий деформирования и разрушения долговечность определяют на основании деформационно-кинетических критериев прочности. При расчете учитьшают кинетику циклических и односторонне накопленных деформаций в различных зонах конструктивных элементов, а также изменение механических свойств материала при высокотемпературном малоцикловом нагружении. Определим долговечность элементов конструкций с зонами концентрации напряжений и мембранными зонами при различных режимах длительного малоциклового нагружения, приводящих к усталостным и квазиста-тическим повреждениям. В качестве модельного элемента выберем оболочечную конструкцию с фланцами, работающую при повторном нагружении внутренним давлением при высоких температурах. Предположим, что конструктивный элемент изготовлен из аустенитной стали ее характеристики при статическом и длительном нагружении  [c.122]


Расчетная оценка малоцикловой долговечносга. На базе полученной информации о циклических деформаций в опасной точке детали и кривых малоцикловой усталости оценим долговечность телескопического кольца, используя деформационно- кинетический критерий прочности при постоянных температурах [см. соотношение (1.3)]. Разрушения детали (см. рис. 3.2) в условиях эксплуатации, а также модели при стендовых испытаниях в условиях высокотемпературного малоциклового нагружения имеют преимущественно усталостный характер (наличие сетки мелких трещин, инициирующих магистральное разрушение, без признаков накопления односторонних деформаций), поэтому расчетное критериальное уравнение, описьшающее предельное состояние материала, обусловленное накоплением усталостных повреждений, принимаем в виде  [c.144]

Деформационное старение, сущность которого заключаетсн в пластическом деформировании закаленной низкоотпущенной стали с последующим старением, повышает усталостную прочность стали 40Х при чистом изгибе в воздухе, увеличивает времп до разрушения в области высоких амплитуд циклических напряжений в коррозионной среде, независимо от степени деформации при старении (0—4 %). не оказывает влияния на условный предел коррозионной выносливости этой стали (Мой-сеев Р.Г. и др. [121, с. Т01]).  [c.55]


Смотреть страницы где упоминается термин Разрушения деформационные усталостные : [c.42]    [c.87]    [c.144]    [c.14]    [c.27]    [c.64]    [c.108]    [c.239]    [c.203]    [c.368]    [c.368]   
Проектирование сварных конструкций в машиностроении (1975) -- [ c.114 ]



ПОИСК



Деформационно-силовое уравнение усталостного разрушения

Деформационные и энергетические критерии усталостного разрушения металлов

Деформационные швы

Разрушения деформационные

Усталостная

Усталостное разрушение



© 2025 Mash-xxl.info Реклама на сайте