Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система марганец — углерод

Рис. 3.7. Политермические разрезы системы железо — марганец — алюминий — углерод Рис. 3.7. Политермические разрезы <a href="/info/336071">системы железо</a> — марганец — алюминий — углерод

Принятая государственными стандартами СССР система обозначения марок стали даёт возможность легко установить химический состав данной марки стали. В этой системе двузначные числа с левой стороны букв в обозначениях марки стали показывают среднее содержание углерода в сотых долях процента, а буквы справа от этих чисел обозначают Г—марганец, С— кремний. X—хром, Н—никель, В — вольфрам, Ф—ванадий, М —молибден, Ю—алюминий цифры после букв обозначают процентное содержание соответствующего элемента в целых единицах. Обозначения марок высококачественной стали, более чистой по сравнению с качественной в отношении серы и фосфора и с повышенными механическими свойствами, дополняются буквой А в конце обозначения.  [c.359]

Уменьшение низкотемпературной пластичности носит название отпускной хрупкости. Наиболее часто она наблюдается у Сг, Ni, Мо" сталей, используемых для роторов турбин, и Мп, Мо сталей, используемых для корпуса легководных реакторов. Проявляется она в уменьшении ударной вязкости или увеличении температуры хрупкого перехода. Это связано с миграцией определенных элементов, которые занимают соседствующее положение в периодической системе, к границам зерен и проявляется в виде интер-кристаллитного излома. Миграция наблюдается для большинства легирующих элементов, включая углерод, кремний, никель и марганец, но не отмечена для молибдена. Примесные элементы при температуре отпуска находятся в твердом растворе и выделяются по границам зерен при температуре 500° С. Поэтому хрупкости можно избежать при быстром охлаждении стали с температуры отпуска, но это может привести для массивных изделий к появлению высоких, превышающих предел текучести, внутренних напряжений, действие которых может быть более отрицательным, чем сама отпускная хрупкость. Технология ступенчатого охлаждения от температуры отпуска при удачно выбранной температуре ступенек позволяет избежать отпускной хрупкости и в то же время не привести к появлению больших внутренних напряжений. Отпускная хрупкость может быть сведена к минимуму при снижении содержания примесей от 0,01 до 0,001% за счет тщательного выбора скрапа и шлака, а также при использовании очень чистого, например электролитического, железа. Дальнейшее улучшение может быть достигнуто в результате удаления кремния, т. е. при использовании вакуумного раскисления. Трудно расположить элементы в порядке усиления их влияния на отпускную хрупкость, так как некоторые из них используются редко или в таких малых количествах, что их влияние трудно учесть. Проведенные в последние годы исследования позволили получить стали для больших роторов, температура хрупкого перехода которых снижена со 100° до 0°С.  [c.53]


Положение легирующих элементов в периодической системе элементов Менделеева, строение и размеры их атомов. К числу легирующих элементов в стали относятся элементы второго периода — висмут и азот, третьего — алюминий и кремний, четвертого — титан, ванадий, марганец, кобальт, никель и медь, пятого — цирконий, ниобий и молибден, шестого — вольфрам и свинец. Кроме этих элементов, в стали присутствует еще элемент второго периода — углерод.  [c.303]

Одни из них (углерод, азот, никель, марганец, медь и в некоторых случаях кобальт) действуют в сторону образования аустенита, способствуя расширению аустенитной области, а другие (хром, вольфрам, тантал, молибден, титан, ниобий, кремний, ванадий, алюминий) — в сторону образования феррита, способствуя расширению ферритной области. Степень влияния того или иного элемента можно определить, исходя из сопоставления данных по сужению Y-области по сравнению с диаграммой системы Fe—С.  [c.239]

Рис. 247. Влияние марганца и никеля, а также небольших количеств углерода и азота на положение границы, отделяющей 7-область, в системе железо—хром—никель—марганец [199] Рис. 247. Влияние марганца и никеля, а также небольших количеств углерода и азота на положение границы, отделяющей 7-область, в <a href="/info/336133">системе железо—хром—никель</a>—марганец [199]
Рис. 36. Длительность диффузионной пайки армко-железа припоем системы железо—марганец—углерод в зависимости от толщины прослойки жидкой фазы Рис. 36. Длительность <a href="/info/274610">диффузионной пайки</a> <a href="/info/33513">армко-железа</a> припоем <a href="/info/125182">системы железо—марганец</a>—углерод в зависимости от толщины прослойки жидкой фазы
На рис. 41 сплошные линии представляют диаграмму состояния системы железо — цементит, а пунктирные — системы железо — углерод. Это связано с тем, что углерод в сплавах может находиться в виде графита и цементита. Чем меньше скорость охлаждения чугуна, тем больше в нем графита и меньше цементита. Повышенное содержание углерода и кремния в чугуне способствует увеличению количества графита и величины графитных включений, а марганец, наоборот, способствует образованию и сохранению цементита величину графитных включений марганец уменьшает. В сравнении со сталями чугун содержит значительно больше кремния и марганца.  [c.91]

Сталь легированная конструкционная (ГОСТ 4543—71). Поковки из конструкционной стали для ряда деталей современных машин должны обладать высокими механическими свойствами прочностью, вязкостью и сопротивлением усталости. Углеродистая качественная конструкционная сталь иногда не удовлетворяет этим требованиям, так как прочность и твердость растут с повышением содержания углерода в стали, но одновременно с этим уменьшается пластичность и вязкость, повышается хрупкость. Поэтому поковки для ответственных деталей изготовляют из легированных сталей, обладающих повышенными механическими свойствами. Марки низколегированных и легированных конструкционных сталей обозначаются по буквенно-цифровой системе. Для маркировки этих сталей принято легирующие элементы обозначать буквами X — хром, Н — никель, Г — марганец, С — кремний, М — молибден, В — вольфрам, Ф — ванадий, К — кобальт, Т — титан, Ю — алюминий. Марганец и кремний являются легирующими, если содержание в стали первого более 1 % и второго — не менее 0,8%.  [c.136]

Для маркировки легированных сталей установлена буквенно-цифровая система. Легирующие элементы в марках стали обозначаются следующими буквами А — азот, Б — ниобий, В — вольфрам, Г — марганец, Д — медь, Е — селен, М — молибден, Н — никель, Р — бор, С — кремний, Т — титан, Ф — ванадий, Ю — алюминий, К — кобальт, X — хром, Ц — цирконий. Цифры перед буквенным обозначением марки стали указывают среднее содержание углерода в сотых или десятых долях процента. После цифр ставят буквы, обозначающие легирующие элементы, входящие в состав данной стали. Цифры, стоящие после букв, указывают примерное содержание легирующего элемента в целых единицах. Букву А (азот) ставить в конце обозначения марки не допускается.  [c.25]


Принятая в ГОСТе система обозначения марок стали связана с ее химическим составом. Двузначные числа с левой стороны обозначений марок стали показывают среднее содержание углерода в сотых долях процента следующие затем буквы обозначают Н — никель, X — хром, Г — марганец, С — кремний, В — вольфрам, Ф — ванадий М — молибден Т — титан, Р — бор.  [c.117]

Основные компоненты чугуна — железо, углерод и кремний. Кроме того, обычные чугуны содержат марганец, фосфор и другие элементы. Несмотря на сложность химического состава чугуна, важнейшие структурные изменения при его отжиге качественно можно проанализировать с использованием диаграммы состояния двойной системы Ре—С. В этой системе, как известно, аустенит и феррит могут находиться в стабильном равновесии с графитом (пунктирные линии на рис. 86) и в метастабильном равновесии с цементитом (сплошные линии).  [c.180]

При введении в железные сплавы углерода элементы переходных групп IV, V и VI периодов, расположенные в периодической системе левее железа, образуют карбиды. Дают карбиды железо,. марганец, хром, ванадий, титан. Повторяют свойства хрома — молибден и вольфрам, свойства ванадия — ниобий и тантал, свойства титана — цирконий и гафний. Приданием частицам карбида различ кой степени дисперсности можно изменить твердость стали от 150, io 500 Н я выше.  [c.39]

Основные элементы, с помощью которых регулируется качество ковкого чугуна,—это углерод и кремний, а в производстве перлитного чугуна кроме того,—марганец. хром, титан, никель. Для достижения высоких показателей механических свойств необходимо возможно более низкое содержание С. Пределом в этом отношении служат только требования к технологическим свойствам чугуна — величине усадки и жидкотекучести, которые в свою очередь определяются экономически целесообразным расходом металла на литниковые системы и возможностью перегрева металла В практически применяемых плавильных агрегатах. Поэтому практическими преде-  [c.310]

Рис. 13.18. Номограмма для определения относительной износостойкости при абразивном изнашивании и температуры условной хладостойкости сталей системы железо-марганец-углерод Рис. 13.18. Номограмма для определения относительной износостойкости при <a href="/info/29709">абразивном изнашивании</a> и <a href="/info/276562">температуры условной</a> <a href="/info/295836">хладостойкости сталей</a> <a href="/info/125182">системы железо-марганец</a>-углерод
На рис. 60 приведена диаграмма Ге—С (графитная), характеризующая структурные составляющие этой системы сплавов. Рассмотренная выше кинетика образования различных структур чугуна относится к двухкомпонентной системе железо—углерод. Практически чугун всегда содержит также кремний, марганец, серу, фосфор и другие примеси, которые оказывают различное влияние на рассмотренные превращения и получаемую структуру чугуна.  [c.83]

Хром применяется в жаростойких сплавах в количестве 2—35 /о- Из диаграммы состояния системы железо — хром ясно, что мартенситные стали содержат 2—14 /о Сг, а ферритные 14—35 /о Сг. Однако эти границы могут сдвигаться из-за присутствия других элементов. Например, элементы, способствую-ш,ие устойчивости аустенита (углерод, азот, марганец и никель), расширяют область мартенситных сталей в сторону большего содержания хрома, в то время как кремний, вольфрам, молибден, титан, ниобий и алюминий сужают ее, снижая верхний предел содержания хрома.  [c.669]

Эвтектика Ni—Si (при - 10% Si) имеет температуру плавления 1125° С и состоит из Ni (а) и химического соединения №381. На основе эвтектики Ni—Si разработан ряд припоев. Иногда эти припои содержат кроме кремния хром, повышающий жаростойкость и жиропрочность припоев, некоторое количество железа, способствующего улучшению смачиваемости припоем оснсж-ного металла, а также марганец и углерод, упрочняющие эти припои. Припои системы Ni—Si—Сг, содержащие до 7—7,5% Si, обычно прокатываются припои с большим количеством кремния применяют в виде порошков, паст и литых прутков.  [c.142]

Эвтектика N1 — 51 (при --10% 51) имеет температуру плавления 1125° С и состоит из Н1(а) и химического соединения Ы1з51. на основе эвтектики N1 — 51 разработан ряд припоев. Иногда эти припои содержат, кроме кремния, хром, повышающий жаростойкость и жаропрочность припоев, некоторые количества железа, способствующего улучшению смачиваемости припоем основного материала, а также марганец и углерод, упрочняющие эти припои. Припои системы N1 — 51-—Сг, содержащие до  [c.236]

Эти сплавы обладают высоким электросопротивлением, небольшим температурным коэфициентом электросопротивления и высокой жаростойкостью. Кроме никеля и хрома, в эти сплагы вводятся и другие элементы железо до 25—ЗООф (для замены никеля и облегчения механической обработки) молибден до 7<>/q (повышает удельное электросопротивление и жаростойкость), марганец до 4% (раскислитель, десульфуризатор и дегазификатор). Углерод вреден, так как он увеличивает хрупкость и уменьшает жаростойкость нихромов. Содержание его ограничивается по стандарту 0,25<>/о. Никель и хром обладают ограниченной растворимостью в твёрдом состоянии. При эвтектической температуре 1320° С в никеле растворяется 46% Сг и при комнатной температуре 35%. В тройной системе N1 — Сг — Fe в никелевом углу имеется обширная область тройного твёрдого раствора (фиг. 212).  [c.225]

Легирующие элементы оказывают большое влияние на точку Л,, соответствующую температуре перехода перлита в аустенит (рис. 93, а). Никель и марганец снижают температуру А , а Т1, Мо, 31, У и другие элементы повышают температуру Л1 (см. рис, 93, а). Легирующие элементы уменьшают эвтектондную концентрацию углерода (рис. 93, б) к предельную растворимость углерода в аустените, сдвигая точки 5 к на диаграмме состояния Ре—С влево. Как видно из рис. 94, где приведены вертикальные разрезы тройной диаграммы состояния Ре—Мп—С и Ре—Сг—С, перитектическое, эвтектическое и эвтектоидное превращения протекают не при постоянной температуре, как в двойных системах, а в некотором интервале температур. В системе р е—Мп.—С у-фаза с увеличением содержания марганца существует и в области более низких температур. В системе Ре—Сг—С с возрастанием концентрации хрома область существования у-ф>ззь( сужается. Состав карбидной фазы (К) в марганцовистых сталях соответствует соединению (РеМп)8С, в котором часть атомов железа. замещена атомами марганца. В хромистых сталях образуются (Ре, Сг)зС и специальные хромистые карбиды, состав и структура которых зависят от содержания углерода и хро.ма. При низком содержании углерода и высоком содержании хрома образуются ферритные стали, не претерпевающие полиморфного превращения (рис. 94, б).  [c.137]


В основу маркировки легированных сталей положена буквенно-цифровая система (ГОСТ 4543-71), Легирующие элементы обозначаются буквами русского алфавита марганец - Г, кремний - С, хром - X, никель - Н, вольфрам - В, ванадий - Ф, титан - Т, молибден - М, кобальт - К, алюминий - Ю, медь - Д, бор - Р, ниобий - Б, цирконий - Ц, азот - А. Количество углерода, как и при обозначениях углеродистых сталей, указывается в сотых долях процента цифрой, стоящей в начале обозначения количество легирующего элемента в процентах указывается цифрой, стоящей после соответствующего индекса. Отсутствие цифры после индекса элемента указывает на то, что его содержание менее 1,5 %. Высококачественные стали имеют в обозначении букву А, а особовы-сококачественые - букву Ш, проставляемую в конце. Например, сталь 12Х2Н4А содержит 0,12 % С, около 2 % Сг, около  [c.19]

Автор кратко рассмотрел влияние на свойства жаропрочных сталей и сплавов осгшвных легирующих элементов — никеля и хрома, а также наиболее энергичных аустенитизаторов — азота, бора, углерода. Марганец, как уже отмечалось, в качестве аусте-нитизатора действует примерно вдвое слабее никеля. Поэтому при введении больших количеств марганца в состав жаропрочных сталей рекомендуется одновременно повышать содержание в них углерода или азота. По нашим данным весьма полезен в данном случае и бор. Сам по себе марганец, естественно, не повышает жаропрочности аустенитных сталей. Для максимального упрочнения твердого раствора Fe—Сг—Мп его легируют молибденом, вольфрамом, ниобием, ванадием, титаном [371 в присутствии углерода с азотом. В высокожаропрочных сплавах на никелевой основе содержание марганца обычно сильно ограничивают, например до 0,3—0,5%. Возможно, это связано с относительной легкоплавкостью (см. рис. 78, в) и малой жаропрочностью сплавов системы Ni—Мп. Правда, в последнее время в состав никелевых сплавов типа инконель вводят до 10% Мп [42].  [c.45]

Микроструктуры швов, полученных при разных зазорах в случае пайки стали СтЗ припоем системы железо — углерод — марганец, приведены на рис. 46. Как следует из микроструктур, с уменьшением зазора происходит смена форм затвердевания. При развитии дендритных форм роста направленный теплоотвод приводит к тому, что преимущественный рост и развитие приобретают кристаллы, наиболее благоприятно ориентированные в направлении теплоотвода. Такие кристаллы выклинивают менее благоприятно ориентированные кристаллы. Так образуется текстура роста—явление, характерное  [c.102]

Тройные диаграммы Ре — Сг — N1 и Ре — Сг — Мп приведены на рис. 168. Области ферритных (Ф) и аустенитных (А) сплавов разделены зонами промежуточных структур аустенит + феррит А + Ф) и аустенит + мартенсит А + М). В системе Ре — Сг — Мп (рис. 168, б) вследствие того, что марганец менее эффективен при стабилизации аустенита, области Л + Ф и А М более развиты. Легирование сплавов азотом (углеродом) ведет к расширению области аустенита и повышению его устойчивости. Наоборот, такие элементы, как Т1, МЬ, 51, А1, Мо, Ш, способствуют образованию феррита. В вы oкoxpo п тыx сплавах при медленном охлаждении с высоких температур или длительного нагрева при температуре 700—900° С в феррите или аустените может образоваться а-фаза, охрупчивающая сплав. В присутствии углерода образуются карбиды хрома.  [c.291]

Для обозначения марок сталей принята буквенно-цифровая система. Элементы, входящие в состав металлов и сплавов, условно обозначают следуюши.ми буквами Ю — алюминий, Р — бор, Ф — ванадий, В — вольфрам, С — кремний, Г — марганец, Д — медь, М — молибден, Н — никель, Б — ниобий, Т — титан, У — углерод. П — фосфор, X — хром. Цифры показывают содержание углерода и легирующего компонента. Первые две цифры в начале обозначения показывают среднее содержание углерода в сотых долях процента. Цифры, стоящие после буквы, указывают примерное содержание легирующего компонента (в целых процентах), который данная буква характеризует. Если содержание компонента меньще или около 1%, то цифра отсутствует, если содержание компонента около 1,5%, то ставится цифра 1, около — 2% — цифра 2 и т. д.  [c.204]

Для легированных конструкционных и инструментальных сталей ГОСТ установлены следующие условные буквенные обозначения легирующих элементов X — хром, Н — никель, В — вольфрам, Ф — ванадий, М — молибден, Г — марганец, К — кобальт, С — кремний, Д — медь, Ю — алюминий, Т — титан. Система тларкировки легированных сталей установлена буквенно-цифровая. Впереди ставятся две или одна цифра, обозначающие содержание углерода, если его меньше одного процента. Две цифры обозначают содержание углерода в сотых долях процента, а одна цифра — в десятых долях процента. Если цифр нет, следовательно, содержание углерода больше одного процента. После  [c.23]

Стали и чугуны представляют собой сложные сплавы, содержащие, кроме железа и углерода, другие элементы — кремний, марганец, фосфор и серу, а также цветные металлы (в легированных сталях и чугунах). Главнейщей составной частью, определяющей характер и свойства железоуглеродистого сплава, является углерод. Структура и свойства стали и чугуна изменяются лишь при условии нагрева их до критических температур, зависящих от содержания углерода в этих сплавах. Критические температуры железоуглеродистых сплавов с разным содержанием углерода могут быть нанесены на специальную диаграмму, называемую диаграммой состояния сплавов системы железо — углерод.  [c.38]

Все сказанное выше относится к двойной системе железо — углерод. В используемых в технике железоуглеродистых сплавах всегда содержатся марганец и кремний (от десятой доли % и более) и примеси серы и фосфора (сотые доли процента). Следовательно, эти сплавы не двухкомпонентные, а более сложные. Поэтому использовать диаграмму состояния двойной системы железо — углерод для выяснения фазовых превращений в таких сложных сплавах необходимо с большой осмотрительностью. Прежде всего присутствие других компонентов изменит температуры превращений. Обычно эти температуры понижаются. Далее, перитектическое, эвтектическое и эвтектоидное превращения, происходящие в двух-компонентпой системе при постоянной температуре перестанут быть нонвариантными и будут проходить в интервале температур.  [c.152]

В основу обозначения марок стали по ГОСТ положена буквенно-цифровая система. Легирующие элементы обозначаются буквами Г — марганец, С — кремний, X — хром, Н — никель, М — молибден, В — вольфрам, Ф — ванадий, К — кобальт, Ю — алюминий, Т — титан, Д — медь, П — фосфор. Цифры с левой стороны букв обозначают среднее содержание углерода в сотых долях процента. Цифры после букв показывают примерное содержание легирующих элементов в целых процентах. Если содержание легирующего элемента меньше или около 1 %, то цифра после буквы не ставится. Например, марка 60С2 означает, что в стали содержится 0,55— 0,65% С и около 2% 51, марка 40Х—0,35—0,45% С и приблизительно 1 % Сг. Для высококачественных сталей, более чистых по содержанию серы и фосфора (не более 0,03% каждого) по сравнению с качественной сталью (5 и Р неболее 0,04% каждого), в конце обозначения марки ставится буква А. Например, марка 12Х2Н4А означает высококачественную сталь с содержанием 0,11—0,17% С, около 2% Сг, около 4% N1.  [c.282]

Во многих случаях,— писал Менделеев,— настоит еще большое сомнение относительно места олементов, недостаточно исследованных и притом близких к краям системы так напр., ванадию, судя по исследованиям Роско, должно быть дано место в ряду азота, его атомный вес (51) заставляет его поместить между фосфором и мышьяком. Физические свойства оказываются ведущими к тому же самому определению положения ванадия так хлорокись ванадия УОСР представляет жидкость, имеющую при 14° удельный вес 1.841 и кипящую при 127°, что и приближает ее, а именно ставит выше соответственного соединения фосфора. Поставив ванадий между фосфором и мышьяком, мы должны бы были открыть таким образом в нашей предыдущей таблице особый столбец, ванадию соответствующий. В этом столбце, в ряду углерода, открывается место для титана. Титан относится к кремнию и олову по этой системе совершенно точно так, как ванадий к фосфору и сурьме. Под ними, в следующем ряду, к которому принадлежит кислород и сера, может быть нужно поместить хром тогда хром будет относиться к сере и теллуру совершенно так, как титан относится к углероду и олову. Тогда марганец Мп = 55 должно было бы поместить между хлором и бромом. Составилась бы при этом следующая часть таблицы  [c.115]


Система железо — углерод — марганец Б области практически важных содержаний марганца (до 7"1а Мп) и углерода (до 1,50/о С) была исследована в работах [1—3]. Политермические и изотермические разрезы, по данным этих работ, а также по данным работы [41, показаны на рис. 35—44. На изотермических разрезах (рис. 40—44) по оси Ре—Мп масштаб в 10 раз меньше, чем по оси Ре — С [следует помнить, что изображение, хотя и является наглядным, но дает неточное представление о протяженности фазовых полей (Прим. ред.). В системе отсутствуют двойные карбиды, однако марганец в больших количествах растворим в цементите, а железо — в карбидах марганца. Карбидная фаза (К на рис. 35—44) представляет собой карбид (РеМп)зС растворимость марганца в нем уменьшается с понижением  [c.528]

Для проверки высказанных предположений мы исследовали особенности внутрикристаллической ликвации в избыточном и эвтектическом аустените элементов, относящихся к обеим рассматриваемым категориям первую представляли (в порядке повышения активности углерода) алюминий, медь, никель, вторую (в порядке повышения активности углерода) вольфрам, молибден, марганец, хром. Влияние большинства из них на температуры фазовых превращений при кристаллизации чугунов, в частности на смещение границ эвтектического интервала, изучено недостаточно. Варианты тройной диаграммы Ре—С—N1 предусматривают повышение температуры аустенито-графитной и аустенито-карбидной эвтектик [4]. Позднейшие наблюдения подтвердили этот вывод, по крайней мере, в отношении стабильной эвтектики 15]. Для сплавов Ре—С—А1 в соответствии с предложенной в работе [6] тройной диаграммой эвтектический тальвег должен иметь наклон от стороны Ре—С, что не согласуется с опытными данными о повышении температуры аустенито-графитной эвтектики под влиянием алюминия 17]. Расходятся данные и относительно влияния хрома согласно модели ликвидусных поверхностей для системы Ре—С—Сг [8], хром обусловливает подъем температуры стабиль-4 51  [c.51]

Принятая ГОСТом система обоз1шчениГ марок стали дает возможность легко установить их химический состав. В этой системе двузначные числа с левой стороны от букв указывают среднее содержание углерода в стали в сотых долях процента. Буквы справа от этих чисел обозначают соответственно Г—марганец, С — кремний, X —хром. И —никель. В —вольфрам, Ф — ванадий, М — молибден, Ю — алюминий. Цифры, стоящие справа от этих букв, указывают на процентное содержание соответствующего элемента.  [c.25]

Сплавы, содержащие никель и медь. Сплавы системы никель-медь, хотя и не обладают такой же кислотостойкостью, как. материалы, содержащие молибден, широко и успешно применяются в контакте со слабыми растворами серной кислоты (напри.мер для держалок в травильных ваннах), особенно та.м, где требуется стойкость одновременно против износа и коррозии. М о н е л ь - м е т а л л — сплав, получаемый из руды, содержащей никель и. медь в желательном соотношении, без разделения двух этих металлов. Монель-металл состоит приблизительно из 67% никеля и 30%. меди содержание прочих эле.ментов строго контролируется в таких пределах, чтобы получить материал с требуемыми свойствами. Эти элементы обычно марганец (1,25%) и железо (1,25%), а также небольшие количества углерода и кре.мния Можно, конечно, приготовить этот сплав синтетически, но Бауер, Вкртс и Вол-ленбрук указывают, что этот синтетический материал будет по свои.м качествам одинаков с естественны. 1 монель-.металлом лишь в том случае, если весь углерод будет находиться в твердом растворе в противно.м случае ыол ет развиться коррозия за счет частиц графита. Даже в соляной кислоте  [c.480]

Встречаются вполне обоснованные попытки использовать чугуны в качестве припоев для пайки углеродистых и низколегированных сталей. Это направление весьма перспективно, особенно в том случае, если для пайки удается использовать высокопрочные и пластичные модифицированные чугуны. Положительным комплексом свойств обладает припой системы железо—углерод—марганец, известный под маркой ВЗМИ-49. Пайку углеродистых и низколегированных сталей этим припоем можно проводить как в газовых средах, так и с применением флюсов.  [c.197]


Смотреть страницы где упоминается термин Система марганец — углерод : [c.491]    [c.87]    [c.486]    [c.169]    [c.528]   
Металловедение и термическая обработка (1956) -- [ c.343 , c.349 ]



ПОИСК



Марганец

Марганец — углерод

Система железо — кремний — марганец — углерод

Углерод

Углерод— углерод



© 2025 Mash-xxl.info Реклама на сайте