Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Излучение вынужденное (индуцированное)

Излучение вынужденное (индуцированное) 394 дипольное 390, 419  [c.637]

Переход квантовой системы из возбужденного состояния в основное может быть осуществлен как самопроизвольно, так и под влиянием внешних воздействий. В первом случае переход называют спонтанным, во втором — индуцированным (или вынужденным). Вынужденные переходы могут происходить, например, под действием фотонов, энергия которых hv—E —Ei (здесь 2 —энергия возбужденного состояния, Е[ — энергия основного состояния). Как спонтанные, так и индуцированные переходы могут быть излучательными. Излучение, возникающее при спонтанных переходах, называют спонтанным, а при вынужденных — индуцированным (или вынужденным).  [c.316]


Уравнение переноса излучения. Это уравнение с учетом спонтанного и вынужденного (индуцированного) излучения и рассеяния по направлениям имеет вид (3-18)  [c.339]

М. п. составляют физ. основу широкого круга разнообразных эффектов, проявляющихся в изменении характеристик эл.-магн. излучения, а также свойств и состояния вещества. К ним относятся многофотонное поглощение и испускание, многофотонная ионизация атомов и молекул, многофотонный фотоэффект, широкий класс процессов рассеяния света и т. п. Каждый фотон, возникающий при М. п., может испускаться либо спонтанно, либо под действием внеш. излучения. В соответствии с этим М. п. делятся на спонтанные и вынужденные (индуцированные), такие, как спонтанное и вынужденное рассеяние света, спонтанное и вынужденное многофотонное излучение (см. также Комбинационное рассеяние света, Мандельштама — Бриллюэна рассеяние).  [c.167]

Если атом находится в верхнем энергетическом состоянии, то вероятность перехода его в состояние с меньшим значением энергии имеет две составляющие. Первая зависит от свойств атома и не зависит от внешних факторов вторая линейно зависит от плотности энергии излучения, соответствующей частоте перехода. Первая составляющая определяет спонтанное излучение, вторая —- вынужденное (индуцированное) излучение. Вероятности спонтанного и вынужденного излучений определяются коэффициентами Эйнштейна А и В.  [c.8]

ХОДЫ снизу вверх могут осуществляться при воздействии или света накачки или колебаний решетки кристалла. Переходы ионов с верхних уровней энергии на нижние могут происходить при воздействии внешнего к данному иону светового излучения (вынужденные или индуцированные переходы), спонтанно, либо при воздействии тех же колебаний решетки, что и в первом случае. В отсутствие светового излучения все переходы для близко расположенных уровней совершаются под воздействием колебаний решетки в основном безызлучательным образом. При этом для каждой конкретной температуры кристалла Т устанавливается равновесие числа переходов вниз и вверх и соответствуюш,ее этой температуре распределение населенностей энергетических уровней ионов.  [c.17]

Работа квантовых приборов для генерации и усиления электромагнитных волн— мазеров (СВЧ-диапазон) и лазеров (оптический диапазон) — основана на стимулированном (или вынужденном, индуцированном) излучении атомами или молекулами фотонов. На возможность индуцированного излучения наряду со спонтанным (самопроизвольным) указал А. Эйнштейн в 1917 г., а первые приборы на основе индуцированного излучения были созданы в 50-х годах в СССР — Н. Г. Басовым и А. М. Прохоровым, в США — Ч. Таунсом.  [c.246]


Вынужденное индуцированное излучение можно образно представить, сравнив возбужденный атом с заряженным ружьем, у которого взведен курок. Пролетая мимо него посторонний фотон спускает курок, и атом выстреливает своим фотоном. Как и ружье, энергия спуска курка пренебрежительно мала по сравнению с энергией выстрела . Из общих, абстрактных сооружений Эйнштейн теоретически показал, что второй фотон должен лететь строго по тому же направлению, что и первый, стимулировавший его рождение. Оба они должны быть совершенно одинаковыми фотонами-близнецами.  [c.91]

Фотоны — бозоны, т. е. подчиняются статистике Бозе— Эйнштейна. В одном состоянии их может находиться сколько угодно и более того если в каком-то состоянии уже имеются фотоны, то вероятность другим фотонам перейти в такое же состояние увеличивается. Этот принцип вынужденных (индуцированных) переходов (вынужденного излучения) является противоположностью принципу запрета Паули для фермионов.  [c.11]

ВЫНОСЛИВОСТИ ПРЕДЕЛ, наибольшая величина периодически меняющегося напряжения в материале при циклич. воздействии нагрузки, к-рое не приводит к разрушению материала при сколь угодно большом числе циклов. См. Усталость материалов. ВЫНУЖДЕННОЕ ИЗЛУЧЕНИЕ (вынужденное испускание, индуцированное излучение), испускание эл.-магн. излучения квант, системами под действием внешнего (вынуждающего) излучения при В. и. частота, фаза, поляризация и направление распространения испущенной эл.-магн. волны полностью совпадают с соответствующими хар-ками внеш. волны. В. и. принципиально отличается от спонтанного излучения, происходящего без внеш. воздействий. Существование В. и. было постулировано А. Эйнштейном в 1916 при теор. анализе процессов теплового излучения с позиций квант, теории и затем подтверждено экспериментально.  [c.96]

В основу работы лазеров положено явление усиления электромагнитных колебаний при помощи вынужденного, индуцированного излучения атомов и Молекул, которое было предсказано А. Эйнштейном еще в 1917 г. Он показал, что между средой, состоящей из молекул, атомов и электронов, и светом постоянно происходит обмен энергией в результате порождения одних и уничтожения других квантов света. Эта среда может как поглощать и рассеивать, так и при определенных условиях усиливать падающее на нее излучение. Причем излучение среды может быть как спонтанным (самопроизвольным), так и стимулированным (вынужденным). А. Эйнштейн показал, что для получения стимулированного излучения (лежащего в основе работы лазеров) среду необходимо перевести из равновесного энергетического состоя-нпя в неравновесное, т. е. передать ей дополнительную энергию.  [c.5]

К равенству единице отношения излучательной способности к поглощательной только в условиях черного тела, т. е. при равенстве излучательно-поглощательных условий. Второе определение утверждает, что полное поглощение — это индуцированное поглощение минус вынужденное излучение, т. е. вынужденное излучение рассматривается как отрицательное поглощение. Полное излучение — это просто спонтанное излучение. Это второе определение, по-видимому, справедливо для любых условий теплового излучения независимо от того, существует или не существует равновесие. Кроме того, второе определение лучше соответствует экспериментальному определению поглощения. Экспериментально нет возможности отделить индуцированное поглощение от вынужденного излучения.  [c.326]

Кроме спонтанного излучения возбужденного атома существует индуцированное (вынужденное) излучение, когда атомы начинают излучать энергию под действием внешнего электромагнитного поля. Явление вынужденного излучения дает возможность управлять излучением атомов с помощью электромагнитных колебаний и таким путем усиливать или генерировать когерентное световое излучение.  [c.119]

Волны, испущенные в результате вынужденных переходов, обладают, как показал Эйнштейн, следующей важной особенностью их частота, фаза, направление распространения и состояние поляризации такие же, как у излучения, вызвавшего переходы. Другими словами, индуцированно испущенные фотоны неотличимы от фотонов, падающих на атомы, и роль индуцированного испускания сводится только к увеличению амплитуды поля.  [c.739]

Явления преломления и отражения света с молекулярной точки зрения рассматриваются как результат интерференции падающей волны и вторичных волн, испускаемых молекулами среды благодаря вынужденным колебаниям зарядов, индуцированных падающей волной ( 135). В линейной оптике вынужденные колебания совершаются с частотой внешнего поля, вследствие чего падающая, отраженная и преломленная волны имеют одну и ту же частоту. Если. принимать во внимание ангармоничность колебаний зарядов в молекулах среды, то, как было выяснено в 235, индуцированный полем дипольный момент имеет слагаемые, отвечающие колебаниям с частотами, кратными частоте падающей на среду волны. Поэтому молекулы среды испускают волны и с кратными частотами, и нелинейная среда в целом создает излучение с частотами 2а>, Зсо и т. д. Это явление получило название генерации кратных гармоник света.  [c.837]


Пытаясь получить эту формулу из квантовых представлений, согласно которым поглощение и излучение света квантовой системой (молекулой или атомом) сопровождается переходом этой системы из одного энергетического состояния в другое, А. Эйнштейн в 1916 г. высказал гипотезу о наличии в природе процесса индуцированного излучения. Суть его заключается в том, что в квантовых системах, т. е. в системах с дискретными возможными состояниями, помимо спонтанных и безызлучательных переходов могут происходить так называемые вынужденные переходы, индуцированные электромагнитным полем. На рис. 1.2 схематически показаны все возможные виды переходов между двумя выделенными энергетическими состояниями I и 2, характеризуемыми энергиями Si и 82 соответственно.  [c.13]

Этот процесс (рис. 1.2, в) индуцированного или вынужденного излучения квантов и послужил основой квантовой электроники.  [c.15]

Кванты электромагнитного поля, родившиеся в результате вынужденного излучения, абсолютно тождественны квантам поля, стимулировавшим этот процесс, т. е. внешнее поле и поле, описывающее родившиеся при индуцированных переходах кванты, имеют одинаковое направление распространения, поляризацию и фазу.  [c.16]

Возможность рождения резонансных квантов в процессах вынужденного излучения означает принципиальную возможность когерентного усиления электромагнитной волны за счет вызванных этой волной индуцированных переходов  [c.18]

Вероятности спонтанных и вынужденных переходов связаны между собой соотношениями (1.24) и (1.25), поэтому вероятность индуцированных излучений с заданной частотой tt 2i(v) также зависит от v  [c.23]

Как уже указывалось, процессы индуцированного излучения сопровождаются усилением электромагнитных волн. Определим условия, при которых это возможно. С этой целью рассмотрим прохождение монохроматического когерентного излучения с энергией кванта через среду, частицы которой могут находиться в возбужденных состояниях / и 2 с энергиями возбуждения и 2, удовлетворяющими соотношению (1-8). Плотность частиц Б этих состояниях обозначим N и N2 соответственно. Так как фотоны гибнут за счет процессов поглощения и рождаются при вынужденном излучении, уравнение баланса плотности фотонов в пучке имеет вид  [c.25]

Если атому, находящемуся на основном уровне ео, сообщить энергию, он может перейти на один из возбужденных уровней. Наоборот, возбужденный атом может самопроизвольно (спонтанно) перейти на один из нижележащих уровней, испустив при этом определенную порцию энергии в виде кванта света (фотона). Именно такие спонтанные процессы излучения и происходят в нагретых телах. Нагрев переводит часть атомов в возбужденное состояние и при переходе в нижние состояния они излучают свет. Это излучение атомов происходит независимо друг от друга. Кванты света хаотически испускаются атомами в виде так называемых волновых цугов, которые не согласованы друг с другом во времени и имеют различную фазу. Поэтому спонтанное излучение некогерентно. Кроме спонтанного излучения возбужденного атома существует индуцированное (вынужденное) излучение, когда атомы начинают  [c.201]

Аналогично определим спектральный коэффициент таким образом, что величина NB .p dv равна числу переходов (актов поглощения или вынужденного излучения) в единицу времени, индуцированных полем излучения черного тела с частотой в интервале v v + d Тогда условие равновесия между излучаемой и поглощаемой энергиями можно сразу записать в виде  [c.64]

Кроме спонтанного испускания и поглощения Эйнштейн ввел представление о вынужденном (индуцированном или стимулированном) испускании. Под действием внешнего электромагнитного поля атомы, находящиеся в возбужденном состоянии (например, на уровне 2), могут согласно Эйнштейну либо поглощать энергию, переходя на более высокий уровень, либо, наоборот, отдавать энергию к = Ё2— ь возвращаясь на более низкий уровень энергии. Такие переходы являются вынужденными и обусловливают вынужденное испускание. Вероятность этих переходов в единицу времени есть 2lWv Величина Б21 называется коэффициентом Эйнштейна для вынужденного испускания. Если внешнее поле отсутствует (и = 0), то вынужденные переходы не происходят. Таким образом, внешнее электромагнитное поле вызывает переходы, сопровождающиеся как поглощением, так и испусканием энергии. Следует отметить, что существование вынужденного испускания не противоречит и классической теории. Согласно законам электродинамики электромагнитная волна, падающая на колеблющийся диполь, в зависимости от соотношения фаз их колебаний может усиливать или тормозить колебания диполя. Иными словами, излучение, падающее на атом, может заставлять последний не только поглощать, но и испускать соответствующие кванты энергии.  [c.143]

Вынужденное испускание. Гипотеза Эйнштейна относительно вынужденного испускания состоит в том, что под действием электромагнитного поля частоты V молекула может, во-первых, перейти с более низкого энергетического уровня Е1 на более высокий 2 с поглощением кванта энергии кх = Е2— 1 (рис. 35.1,6) и, во-вторых, перейти с более высокого уровня 2 на более низкий 1 с испусканием кванта энергии Ау = 2— ( (рис. 35.1, в). Первый процесс принято называть поглощением, второй — вынужденным (индуцированным или стимулированным) испусканием. Скорость каждого из этих процессов пропорциональна соответствующим вероятностям 12 и 21 , где 12 и 21 — коэффициенты Эйнштейна для поглощения и вынужденного испускания и — спектральная плотность излучения. Согласно принципу детального равновесия при термодинамическом равновесии число квантов света йп, поглощенных за время (11 при переходах / —>- 2, должно равняться числу квантов с1п2, испущенных в процессе обратных переходов 2- 1. Число поглощенных квантов согласно Эйнштейну пропорционально спектральной плотности радиации и и числу частиц П на нижнем уровне  [c.269]


Излучат. К. п. могут быть спонтанными ( самопроизвольными ), не зависящими от внеш. воздействий на квантовую систему и обусловленными её взаимодей-ствие.м с физ. вакуу.мом (спонтанное испускание фотона), и вынужденными (индуцированными), происходящими под действием внешнего эл.-.магн. излучения резонансной частоты v= (< — й)/А (поглощение и вынужденное испускание фотона) (см. Спонтанное излучение. Вынужденное излучение]. Вероятности излучат. К. п. определяются Эйкиглгейнд коэффициентами и могут быть рассчитаны методами квантовой электродинамики и квантовой механики.  [c.333]

Принципиальной основой работы лазеров является эффект вынужденного (индуцированного) излучения, предсказанный А. Эйнштейном в 1916 г. В 1939 г., а затем в 1951 г. В. А. Фабрикант предложил способ усиления светового излучения путем пропускания его через специальным образом подготовленную усиливающуюся среду. Принципиальные основы построения лазера, как генератора световых колебаний, были заложены в трудах А. М. Прохорова, Н. Г. Басова и Ч. Таунса в 1955—1959 гг. Первый лазер (на рубине) был запущен Т. Мейманом в 1960 г. Лазер на алюмо-иттриевом гранате с неодимом был впервые запущен Г. Гейзиком в 1964 г. [12].  [c.5]

Излучение связано с процессами перехода частиц с одного уровня энергии на другой. При этом возможны два пути. При вынужденном (индуцированном) испускании фотонов исходным процессом является поглощение падающего на частицы потока излучения. Под влиянием энергии этого потока, наряду с переходами частиц с низкого на высокий уровень существуют обратные переходы с высокого на низкий уровень 1. Поскольку энергия системы при этом уменьшается, имеет место вынужденное испускание квантов Ьсо. Число вынужденных переходов йПвын связано с объемной плотностью падающего излучения пзд, заселенностью исходного уровня энергии П/ (зависящей от функции распределения f —>П - =/ п, где п — полное число частиц) и временем йх  [c.61]

Вынужденным индуцированным, стимулированным) излучением называется излучение возбужденн(, Х атОмов (молекул, ионов) вещества, вызванное действием на вещество падающего на него света. Атом, находящийся в возбужденном энергетическом состоянии (VI.2.5.S ), мо->кет перейти в низшее (обычно нормальное, основное) энер-1 етическое состояние под действием электромагнитного поля. Электромагнитное поле как бы сваливает атом с возбужденного энергетического уровня вниз, на основной или менее возбужденный уровень.  [c.455]

Таким образом, излучение, испускаемое атомной системой при наличии знеитиего излучения, состоит из двух частей спонтанного, иропорциоиального Л и вынужденного (индуцированного), цро-порционального  [c.31]

В 1916 г. А. Эйнштейн предсказал, что персмоды электрона в атоме с верхнего апергетического уровня на нижний С испусканием излучения могут происходить под влиянием внешнего электромагнитного поля. Такое излучение называют вынужденным или индуцированным.  [c.314]

В диэлектриках с нецентросимметричной структурой кроме рассмотренных выше механизмов поляризации, индуцированной внешним полем, возможна вынужденная поляризация, при которой ди-польНый момент возникает под действием механических напряжений (пьезополяризация), под влиянием изменения температуры (пиролополяризация) или при воздействии излучений (фотополяризация). В некоторых диэлектриках поляризация может существовать и без каких-либо воздействий спонтанная поляризация).  [c.295]

Нндуцированное излучение, наоборот, обладает такими же характеристиками, что и вынуждающее излучение. Индуцированные фотоны имеют ту же частоту, направление распространения, фазу и поляризацию, что и фотоны, вызвавшие вынужденные переходы.  [c.316]

К представлениям о световых квантах привели два направления исследований. Первое связано с проблемой теплового излучения, второе — с атомными спектрами. Первоначально эти направления развивались независимо друг от друга. Так было до 1916 г., когда появились фундаментальные работы Эйнштейна Испускание и поглощение излучения по квантовой теории и К квантовой теории излучения . В первой работе, опираясь на теорию Бора, Эйнштейн рассмотрел задачу о взаимодействии равновесного излучения с равновесной системой испускаюш,их и поглош,ающих атомов. Он показал, что для получения формулы Планка надо наряду с поглош,ением и спонтанным испусканием рассмотреть дополнительный процесс испускания, который может быть назван индуцированным (вынужденным). Во второй работе обоснована необходимость учитывать изменение импульса атома при испускании или иоглощении им светового кванта здесь же сделан вывод, что импульс светового кванта равен /ioj/с.  [c.68]

Рассмотрим характер излучательных переходов, основываясь на классической работе Эйнштейна, который еще в 1917 г. ввел понятие о спонтанных и индуцированных переходах. Система, состоящая из двух уровней, показана на рис. 29. Если Е > Е , энергетический уровень 2 лежит выше уровня / и частица находится на уровне 2, то она может перейти на уровень /, испустив квант электромагнитного излучения Лv2l = Е — Е . При этом возможно как спонтанное, так и вынужденное излучение. Вероятность спонтанного излучения, т. е. того, что процесс произойдет за промежуток времени (И, составляет Л 21 При облучении происходит взаимодействие кванта излучения с частицами, составляющими систему, что приводит к одному из двух процессов переходу частицы с уровня / на уровень 2 (поглощение) или, если частица была возбуждена, к обратному переходу (испускание). Вероятность, что какой-то из процессов произойдет за время сИ, пропорциональна плотности излучения и (у) и поэтому может быть записана соответственно В12 и (V) (И и 21 и (V) си.  [c.60]

Энергетические переходы атомов и молекул, приводящие к испусканию квантов, могут происходить как самопроизвольно (спонтанно), так и вынужденно (ипду-цированно) под действием внешней электромагнитной волны или фотона. В связи с этим полное количество испускаемой веществом энергии делится на спонтанное и -индуцированное. Спонтанное испускание определяется только химической природой вещества и его термодинамическими параметрами и совершенно не зависит от того, имеется ли в среде внешнее излучение или нет. В количественно.м отношении излучение среды было бы равно ее спонтанному испусканию при условии отсутствия внешнего электромагнитного поля. Од1. 1ко оказывается, что проходящая электромагнитная волна (фотоны) той же частоты, что и испускаемая данным  [c.26]

ИНДУЦИРОВАННОЕ ИСПУСКАНИЕ (индуцированное излучение) — то же, что вынужденное испускание, ИНЕРТНАЯ МАССА — физ. величина, характеризующая дииамич. свойства тела. И. м. входит во второй закон Ньютона (и, т. о., является мерой инерции тела). Равна гравитац. массе.  [c.144]

Особенности вынужденного испускания позволяют генерировать когерентное излучение. Первоисточником является процесс спонтанного испускания, причём наиб, число фотонов будет испущено на резонансной частоте (O21, далее вступает в действие индуцированный процесс. Т. к. число спонтанно испущенных фотонов болыне на частоте ы-л и вероятность индуцированных переходов на этой частоте тоже имеет максимум, то постепенно фотоны на частоте Wji будут доминировать над всеми остальными фотонами. Но для того, чтобы этот процесс развивался, необходима преемственность между поколениями фотонов, т. е. необходима обратная связь.  [c.546]

Отличия и достоинства П. э. Подобно вакуумной и квантовой электронике П. э. основана на явлении индуцированного (вынужденного) излучения и поглощения эл.-магн. волн заряж. частицами в плазме. Но если вакуумная электроника рассматривает излучение потоков заряж. частиц, движущихся в электродинамич. структурах — металлич, либо диэлектрич. волноводах и резонаторах, то П. э. исследует излучение потоков заряж. частиц, движущихся в плазме, в плазменных волноводах и резонаторах (см. Волновод плазменный). Частота эл.-магн. излучения в вакуумной электронике определяется конечными геом. размерами волноводов и резонаторов, а в квантовой электронике — дискретностью энергетич. уровней излучателей (возбуждённых атомов и молекул) поэтому генераторы когерентного эл.-магн. излучения в вакуумной и в квантовой электронике узкополосны, менять их частоту плавно практически невозможно. В плазменных приборах частота зависит не только от геом. размеров волноводов и резонаторов, но и от п.чотности плазмы, поэтому излучатели в П. э. многомодовые меняя плотность плазмы, можно менять частоты в широком интервале.В этом заключается одно из существ, отличий и преимуществ П. э. Так, напр., частота продольных ленгмюровских колебаний холодной изотропной плаз.мы (в систе.ме ед. СС8Е) Шр = (3-10 Нр) / С", где Пр — плотность плазмы. При изменении реально используе.мой плотности плазмы в пределах (10 °—Ю ) см" можно возбуждать волны длиной X (10" —10 ) см, что перекрывает всю полосу СВЧ от субмиллиметрового и до дециметрового диапазона. При наложении на плазму внеш. магн. поля диапазон частот собств. мод эл.-магн. колебаний плазмы расширяется.  [c.607]


При рассеянии интенсивного излучения в среде спонтанные процессы Р. с. могут усилиться стимуляцией излучением (индуцированное излучение). С тэким вынужденным рассеянием света связан широкий круг явлений напр., на вынужденном Р. с. основана работа комбинационного лазера. Если Р. с. стимулируется фотонами, рождёнными в среде в процессе рассеяния, то говорят о вынужденном пассивном рассеянии. Если Р. с. стимулировано внеш. излучением, то его нвз. активным вьшужденным Р, с. (см. Активная лазерная спектроскопия комбиващюнного рассеяния. Нелинейная оптика).  [c.282]

Введение процессов индуцированного излучения по-.зволило Эйнштейну получить формулу Планка из кванто- во-механических соображений и объяснить вид наблюдаемого в экспериментах распределения спектральной плотности Qv(v). Это обстоятельство явилось первым подтверждением правильности гипотезы Эйнштейна о наличии процессов вынужденного испускания квантов.  [c.17]

В основе действия квантовых усилителей и генераторов лежит так называемое отрицательное поглощение. Сущность его заключается в том, что на поглощающую систему, содержащую некоторое количество возбужденных атомов, падает квант, соответствующий по значению кванту, который должен излучиться при переходе возбужденных атомов в нормальное состояние, и тогда из системы в одном направлении выйдут два кванта. Вместо того, чтобы поглотиться, падающий квант вынуждает излучиться второй квант, совпадающий с ним по частоте и направлению движения, т. е. создает вынужденное или индуцированное излучение. При этом испускаемая, т. е. генерируемая, световая волна оказывается точно в фазе с волной, которая была причиной ее возникновения. Вещество, содержащее большое количество атомов в возбужденном состоянии — активное вещество , — получается подачей электромагнитной энергии на длине волны, отличающейся от длины волны вынужденного излучения. Этот активизирующий процесс называется оптической накачкой. Таким образом, атомы переводятся в возбужденное состояние оптической нак -жой. Чтобы вынужденное излучение преобладало над поглоихетием, большинство атомов должно находиться в возбужденном состоянии. Активная среда помещается в резонатор, представляющий собой систему, подобную эталону Фабри и Перо.  [c.69]


Смотреть страницы где упоминается термин Излучение вынужденное (индуцированное) : [c.267]    [c.7]    [c.18]    [c.19]    [c.340]    [c.341]    [c.361]    [c.221]    [c.8]   
Оптические спектры атомов (1963) -- [ c.394 ]



ПОИСК



Излучение вынужденное

Излучение вынужденное (индуцированное) спонтанное

Излучение индуцированное



© 2025 Mash-xxl.info Реклама на сайте