Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Компрессоры газовые охлаждение

Для охлаждения ряда частей турбинного участка и для герметизации уплотнений смазки подшипников газовой турбины ГТН-25И используют атмосферный воздух и воздух, поступающий из осевого компрессора. Предусмотрено охлаждение следующих частей турбинного участка передних и задних поверхностей турбинных колес первой и второй ступеней соплового аппарата и удерживающего кольца первой ступени корпуса ротора турбины выхлопной рамы и опорных распорок внутреннего барабана.  [c.55]


На практике ни изотермическое сжатие воздуха в компрессоре, ни изотермический подвод тепла осуществить в полной мере невозможно. В 10-3 было указано, что для приближения действительного процесса сжатия к изотермическому в компрессорах употребляется многоступенчатое сжатие с промежуточным охлаждением. Точно так же в газовых турбинах для приближения действительного процесса подвода тепла к изотермическому можно применить ступенчатое сгорание с последовательным расширением продуктов сгорания в отдельных ступенях турбины. На рис. 12-20 изображен цикл газотурбинной установки со ступенчатым сгоранием и многоступенчатым сжатием воздуха, который в идеальном случае представляет собой цикл с многоступенчатым расширением, сжатием и с промежуточным подводом и отводом тепла.  [c.403]

В газовую турбину поступает газ из камер сгорания с высокой температурой торможения Т] и статической температурой Ги поэтому в газовых турбинах лопатки работают в более тяжелых условиях, чем в компрессорах. В связи с этим возникают важные задачи охлаждения лопаток и дисков турбин и обеспечения прочности и долговечности турбинных дисков и лопаток ).  [c.112]

В газовых турбинах часто применяют охлаждаемые лопатки охлаждающей средой обычно является воздух, который подводится от компрессора к диску, а затем к хвостам лопаток. В теле лопаток выполнены каналы для охлаждающего воздуха, выпуск происходит через вершину лопаток, а также через отверстия или щели на ее поверхности. Охлаждение может быть внутренним или наружным.  [c.28]

Охлаждение деталей газовых турбин. Детали обычно охлаждаются воздухом, отбираемым от компрессора или от камеры сгорания. Применяются следующие способы охлаждения дисков радиальный обдув, струйное охлаждение, продувка воздуха через зазоры хвостов лопаток, заградительное и комбинированное охлаждение.  [c.242]

В 1937 г. А. М. Люлька был разработан проект турбореактивного двигателя с осевым компрессором и кольцевой камерой сгорания, на несколько лет опередивший появление аналогичных проектов за рубежом. В 1943—1944 гг. под его же руководством в Центральном институте авиационного моторостроения был построен экспериментальный турбореактивный двигатель С-18 (рис. 104). Тогда же (1940—1945 гг.) в ЦИАМ велась разработка оригинальной конструкции авиационного газотурбинного двигателя с трехступенчатой газовой турбиной, с трехступенчатым центробежным компрессором и с системой испарительного жидкостного охлаждения по схеме, предложенной в 1935 г. проф. В. В. Уваровым. С 1945 г. к проектированию турбореактивных двигателей помимо группы А. М. Люлька были привлечены большие конструкторские коллективы А. А. Микулина,В. Я. Климова и других ОКБ и значительно увеличены объемы необходимых теоретических и экспериментальных исследований. К этому же времени относится начало работ по изысканию жаропрочных материалов для газовых турбин двигателей во Всесоюзном институте авиационных материалов (ВИАМ).  [c.369]


В лазерах третьей группы происходит непосредственное преобразование энергии химических реакций в энергию излучения. Лазер такого типа обычно состоит из камеры предварительного смешивания реагентов и камеры, где происходит химическая реакция, которая является одновременно и зоной возникновения вынужденного излучения, т. е. областью резонатора. Прокачка газовой смеси осуществляется помпой или компрессором. В случае необходимости применяется принудительное охлаждение.  [c.68]

Диафрагмы газовых турбин по своей конструкции заметно отличаются от рассмотренных выше диафрагм паровых турбин. Необходимость пропуска большого объема газов при относительно небольшом его давлении приводит к использованию направляющих лопаток большой высоты и ширины профиля. По условиям эксплуатации газовой турбины при остановке неизбежны приток в турбину холодного воздуха из компрессора и быстрое охлаждение проточной части. В этом случае использование диафрагм обычной для паровых турбин конструкции с массивными телом и ободом приводит к возникновению в лопатках значительных термических напряжений, могущих вызвать  [c.148]

Степень повышения давления газовой ступени (при отсутствии промежуточного охлаждения и промежуточного подвода тепла) мало влияет на общий к. п. д. бинарного цикла, поэтому выбор давления за компрессором может целиком определяться стремлением получить максимальную удельную работу. Этот вывод совпадает с результатами аналитического исследования газовой ступени комбинированной парогазовой установки [Л. 2-1].  [c.34]

Заслуживает специального рассмотрения вопрос о применении промежуточного охлаждения воздуха в парогазовых установках. Не имея возможности за недостатком места подробно остановиться на этом обстоятельстве, отметим только два основных положения. При однократном подводе тепла в газовой части парогазового цикла промежуточное охлаждение обычно дает лишь ничтожное увеличение, а подчас даже снижение к, п. д. При многократном подводе тепла промежуточное охлаждение может оказаться выгодным, но поскольку целесообразно устанавливать лишь один промежуточный холодильник, конечная оптимальная температура воздуха за ним обычно все же существенно превышает температуру воздуха, засасываемого компрессором.  [c.39]

Схема установки показана на рис. 2-19. Одноступенчатый воздушный центробежный компрессор сжимает воздух от начального давления 0,98 ama до давления 2,85 ama. На том же валу помещен четырехступенчатый центробежный компрессор, повышающий давление доменного газа от 0,95 ama (при 60° С) до 3,2 ama. Дымовые газы из камеры сгорания выходят с температурой 970° С и после охлаждения в пароперегревателе до 750° С поступают в газовую турбину.  [c.59]

Газотурбинный цикл (рис. 1, а) имеет более высокую среднюю температуру подвода тепла по сравнению с паротурбинным (рис. 1, б). Сжимаемый в компрессоре до давления в точке 4 атмосферный воздух нагревается в камере сгорания до температуры в точке 1, воспринимая тепло Q .. Эта температура достигает в настоящее время 900—1000° С при воздушном охлаждении проточной части газовой турбины и может повыситься до 1200— 1300° С при жидкостном охлаждении. Паротурбинный цикл не может иметь такой высокой начальной температуры рабочего тела.  [c.4]

Промежуточное охлаждение воздуха Многоступенчатое сжатие воздуха с промежуточным охлаждением и многократный подвод тепла позволяют в 1,5—2 раза увеличить мощность газовой ступени ПГУ. Охлаждение воздуха в цикле ГТУ уменьшает потребляемую компрессором мощность, что увеличивает полезную мощность установки. Однако промежуточное охлаждение воздуха при сжатии приводит и к отрицательным явлениям — потерям тепла с охлаждающей водой и увеличению гидравлического сопротивления воздушного тракта ГТУ за счет промежуточных охладителей.  [c.41]

Введение промежуточного охлаждения воздуха позволяет получить высокие значения к. п. д. компрессоров при многократном подводе тепла в газовой ступени ПГУ. Число промежуточных охлаждений должно быть минимальным, а степень повышения давления воздуха перед промежуточными охладителями следует выбирать оптимальной на основании формул (22)—(24). При рациональной степени повышения давления в компрессоре низкого давления промежуточное охлаждение воздуха незначительно уменьшает к. и. д. ПГУ с промежуточным нагревом газов, но позволяет повысить его величину по сравнению с вариантом без промежуточного нагрева газов и охлаждения воздуха. Величина приращения к. п. д. особенно значительна при повышении начальной температуры газов до 800—900° С.  [c.43]


В отличие от паротурбинных установок для ПГУ целесообразно принимать условный к. п. д. парогенератора, отнесенный к суммарному расходу топлива на установку, так как потеря от наружного охлаждения парогенератора складывается с аналогичными потерями для агрегатов и трубопроводов газовой ступени. Кроме того, перед поступлением в парогенератор окислитель нагревается внутри цикла при повышении давления воздуха в компрессоре и за счет сжигания топлива в камерах сгорания газовых турбин, установленных перед парогенераторами. Указанный к. п. д. может быть определен по формуле  [c.191]

Практическое осуществление изотермических процессов подвода и отвода тепла в газовых теплосиловых установках сопряжено с непреодолимыми трудностями. Как было показано в 7-9 и в гл. 10, для того чтобы по возможности приблизить реальные процессы к изотермическим, применяют многоступенчатое сжатие воздуха с промежуточным охлаждением (в компрессорах) и ступенчатый подвод тепла (в газотурбинных установках).  [c.356]

В этой схеме центральное место занимает высокотемпературная газовая турбина с начальной температурой газа 1473 К и выше. Для ГПУ характерна сравнительно небольшая степень повышения давления в компрессоре (14—18), что облегчает задачу конструирования газовой турбины и компрессора. После турбины газ направляется в парогенератор. Пар при температуре 810—830 К поступает в турбину высокого давления, а затем направляется для охлаждения высокотемпературной газовой турбины. Большое количество охлаждающего пара открывает возможность организовать очень интенсивное паровое охлаждение газовой турбины. Вместе с тем отводимая в этом процессе теплота эффективно используется при дальнейшем расширении пара. В турбину низкого давления поступает перегретый пар. Этот пар расширяется до  [c.254]

Сравнительно невысокая степень повышения давления в компрессоре ГПУ, при современных технических средствах позволит создать газовую турбину всего с несколькими ступенями, что упростит задачи конструирования и охлаждения проточной части. Для охлаждения потребуется сравнительно небольшая часть от общего количества пара, отработавшего в ЦВД.  [c.255]

Гелий, подогретый в бланкете 2 и конденсаторах низкого и высокого давления, через сглаживающий теплообменник 8 подводится к газовой турбине 14. Перспективным представляется использование в таких установках высокотемпературных газовых турбин с паровым охлаждением лопаток. Теплота отходящих газов используется в парогенераторе 13 для производства пара, подводимого к паровой турбине 10, откуда он поступает в конденсатор И. Для подогрева поступающей в парогенератор питательной воды служит система регенерации 12. Гелий направляется к бланкету реактора компрес сором 15 через теплообменник 16. На одном валу с турбинами и компрессором расположен электрический генератор 9. В качестве материала для приготовления лайнера наибольшего внимания заслуживают жидкий кадмий или цинк [11].  [c.260]

Поиски веществ, обладающих более благоприятными теплофизическими и ядерно-физическими свойствами, выявили ряд перспективных теплоносителей, таких, как гелий, азот, двуокись углерода. Они нетоксичны, совместимы с большинством конструкционных материалов, могут обеспечить высокую начальную температуру цикла. Особый интерес представляет группа диссоциирующих газов, у которых процесс нагрева сопровождается увеличением числа молей и ростом величины газовой постоянной, а при охлаждении число молей и величина газовой постоянной уменьшаются [89]. Эта особенность диссоциирующих газов дает возможность повысить к.п.д. одноконтурной газотурбинной АЭС за счет уменьшения работы сжатия газа в компрессоре. Использование некоторых диссоциирующих газов с благоприятными ядерно-физическими свойствами в качестве теплоносителя и рабочего тела АЭС позволяет не только повысить термический к.п.д. цикла, но и улучшить использование ядерного топлива. По оценкам ЦКТИ им. И. И. Ползунова и Института ядерной энергетики  [c.76]

Для сжатия горючего — доменного газа — служат два газовых компрессора с промежуточным охлаждением газа между ними. Для сжатия воздуха предназначены два компрессора — высокого давления и низкого давления — также с промежуточным охлаждением между ними.  [c.85]

В установке ГТ-6-750 применен горячий" средний подшипник тепло от него отводи-тся в основном маслом. В этой установке часть силового корпуса между обоймами ТВД и ТНД имеет двойные стенки (внутренняя является тонкостенным экраном), между которыми продувается низконапорный воздух, отбираемый после шестой ступени компрессора и охлажденный до 323 К. Экран изнутри покрыт толстым слоем тепловой изоляции, обеспечивающей приемлемую температуру внешней его поверхности. Продувка воздуха между корпусом и экраном является стабилиэи-рующей и служит в основном для предотвращения перегрева отдельных участков из-за неоднородности тепловой изоляции, местнь1х подводов тепла по металлическим деталям и т.д. Снаружи тепловая изоляция, как обычно, прикрыта экраном, предохраняющим ее от газовой эрозии.  [c.59]

Стали относятся к группе мартенситных, хорошо закаливаются на воздухе или в масле, обладают высокими механическими свойствами при комнатных и повышенных температурах. При температурах глубокого холода имеют малую ударную вязкость. Коэффициент линейного расширения этих сталей невелик, что очень важно для уменьшения зазора в осевых компрессорах газовых турбин. Большинство сталей при охлаждении на воздухе с температур выше критических нодзакаливаются, что следует учитывать при сварке, термической обработке и обработке давлением.  [c.131]


Большинство систем охлаждения газовых турбин предусматривает использование воздуха, отобранного из последних ступеней компрессора, для охлаждения термонапряженных элементов проточной части. Обычно конструктивные схемы трактов охлаждающего воздуха обеспечивают выброс хладо-агёнта в различные участки основного газового потока. Это вызывает частичное изменение в характере обтекания профилей, влияет на газодинамические характеристики рещэтки, изменяет поля скоростей, давлений, увеличивает потери и снижает общий к. п. д. лопаточного венца. Поэтому исследование процессов смещения и сопутствующих им явлений на лопаточном аппарате газовой турбины представляет значительный интерес.  [c.215]

Кроме того, экономичность ГТУ можно повысить, осуществив изотермический подвод и отвод теплоты. Однако на практике из-за конструктивных трудностей невозможно в полной мере осуществить изотермические процессы сжатия и подвода теплоты. Для приближения действительного процесса сжатия к изотермическому в компрессорах применяют многоступенчатое сжатие с пром1 жуточ-ным охлаждением. Точно так же в газовых турбинах для приближения действительного процесса подвода теплоты к изотермическому применяют ступенчатое сгорание с расширением продуктов сгорания в отдельных ступенях турбины. Чем больше число ступеней  [c.288]

Эффективным средством является охлаждение роторов. Этот прием щироко применяют в газовых турбинах. Охлаждаюший воздух, отб мый из первых ступеней компрессора, омывает рабочие диски, после чего вводится в общий газовый тракт турбины. Охлаждение роторов паровых турбин затруднительнее. ,  [c.387]

Газовые холодильные машины с замкнутым циклом. Первые работы, посвяш енные машинам с замкнутым циклом, использующим в качестве рабочего газа воздух, принадлежат Горье [21] (см. также [22]), Кирку [23] и позднее Аллену и Виндхаузену (см. [1, 2]). Схема такой машины, являющейся по существу обращенной воздушной машиной Стерлинга, аналогична схеме газовой холодильной машины с незамкнутым циклом, описанной выше. Различие между этими типами машин заключается в том, что в системе с замкнутым циклом непрерывно циркулирует одна и та же масса газа, обычно при давлении, превышающем атмосферное. Одно из преимуществ замкнутого цикла состоит в том, что в нем может использоваться сухой воздух и тем самым устраняются трудности, вызываемые наличием в газе паров воды. Кроме того, могут быть использованы компрессоры и детандеры меньших размеров, что снижает потери на трение. Схема установки с замкнутым циклом приведена на фиг. 8. Она идентична с изображенной на фиг. 1 схемой с незамкнутым циклом, за исключением того, что холодная камера заменена теплообменником, который находится в контакте с веществом, подвергающимся охлаждению. В схеме, разработанной Алленом, в качестве холодильного газа используется воздух, причем применяются давления /), = 4,5 атм и Р2= = 16,5 атм.  [c.15]

Из перечисленных ранее охлаждающих агентов наиболее перспективным представляется водяной пар прежде всего потому, что он уже имеется в цикле (служит рабочим телом в нижней ступени), таким образом, выполняя и роль охлаждающего агента, он не увеличивает числа рабочих тел, используемых в цикле. Кроме того, для охлаждения он применяется в таких состояниях, при которых, как это будет видно во второй части курса, может быть получена хорошая теплопередача и наконец, охлаждая поверхности газовой турбины, он расширяется и совершает при этом работу. Отмеченные преимущества водяного пара проявляются в разработанном группой работников Центрального котлотурбинного института им. Ползунова (ЦКТИ) и Ленинградского политехнического института (ЛПИ) цикле, который назван ими газопаровым, так как большая часть мощности в отличие от парогазового цикла здесь падает на долю газовой турбины. Этот цикл представлен на рис. 4-39. Пути рабочих тел (продуктов сгорания и водяного пара) в цикле таковы. Атмосферный воздух поступает сначала в компрессор низкого давления (КНД), а затем в компрессор высокого давления (КВД). При давлении в 9,2 ат сжатый воздух поступает в камеру сгорания (КС), в которую подается жидкое или газообразное топливо. Получающиеся при горении продукты сгорания при t = 1 200 °С поступают в высокотемпературную газовую турбину (ВТГТ), лопатки которой и другие части, соприкасающиеся с газом  [c.201]

На рис. 20.2, а, б приведена принципиальная схема газовой холодильной установки и показан цикл этой установки в диаграмме Ts. Работа машины протекает следующим образом. Воздух из охлаждаемой камеры 1 при давлении засасывается компрессором 2 и подвергается аднабатг. ому сжатию до давления р. (процесс 1-2). Сжатый воздух поступает в холодильник 3, где при постоянном давлении p.j происходит его охлаждение (процесс 2-3). Далее охлажденный воздух поступает в турбогетандер 4 (расширительную машину),  [c.258]

Применение внутренней изоляции и эффективной системы воздушного охлаждения деталей турбогруппы позволило резко снизить расход жаропрочных легированных сталей и одновременно повысить надежность турбин. Эффективная тепловая изоляция газовой турбины предотвращает потери тепла в окружающую среду для современных стационарных газовых турбин эти потерн не превышают 1% от тепла, вносимого в установку с топливом. На охлаждение деталей турбогруппы расходуется около 2 т/ч воздуха. Воздухом охлаждаются стяжки 19 (см. рис. 99) корпуса турбины. Снаружи они защищены слоем изоляции, а внутри охлаждаются воздухом, поэтому их температура не превышает 350— 370° С. Для охлаждения дисков ТВД п хвостов рабочих лопаток в корпусе турбины расположена воздухоподводящая система Р, 12 и 18, через которую к диску высокого давления с двух сторон и к корням направляющих лопаток подводится охлаждающий воздух. Воздух к камерам подводится от осевого компрессора по трубкам 9, 12, 18. Для выхода воздуха в проставке имеется ряд отверстий.  [c.230]

Оа8—6, N2 остальное из газового холодильника при температуре 50 °С через всасывающий патрубок подводится к рабочему колесу первой ступени, затем проходит диффузор и направляется последовательно к рабочим колесам следующих ступеней. Из диффузора четвертой ступени газ, нагретый до 260—280 °С, поступает в улитку и через нагнетательный патрубок направляется в окислительную и адсорбционную колонны. В центробежных компрессорах с промежуточным охлаждением нитрозный газ после второй ступени поступает в газоох-ладитель, а затем по обычному пути в третью и чет- вертую ступени. Отходя-  [c.30]

Промежуточные сосуды, находящиеся между ступенями многоступенчатых компрессоров, одновременно являются промежуточными охладителями пара, нагнетаемого предыдущей ступенью газовыми ресиверами, смягчающими неравномерность нагнетания пара предыдущей и всасывания пара последующей ступенями компрессора ресиверами жидкого агента. Полное промежуточное охлаждение нагнетаемого пара (до состояния насыщения) обеспечивается барботажем пара в промежуточном сосуде сквозь исидкий агент.  [c.675]

Охлаждение двигателей [F 01 (воздушное Р 1/00-1/10 жидкостное Р 3/00-3/22 роторных С 21/06) тепловозов и моторных вагонов В 61 С 5/02] деталей (газовых горелок F 23 D 14/78 металлорежущих станков В 23 Q 11/12) В 02 С (дисков в мельницах для измельчения материала 7/17 зерна при помоле 11/08) ж.-д. вагонов В 61 D 27/00 В 21 (заготовок (при ковке или прессовании J 1/06 или рабочего инструмента прессов С 29/00-29/04) инструментов для обработки металла давлением D 37/16 при ковке или штамповке К 29/00 листового металла при обработке давлением D 37/16 оправок для труб при прокатке В 25/04 проката В 45/02 станин прокатных станов В 43/00-43/12) В 60 (колес транспортных средств В 19/10 силовых установок на транспортных средствах К 11/00-11/08 транспортных средств Н 1/32 шин транспортных средств С 23/18-23/19) компрессоров F 04 (С 29/04 объемного В 39/06) конденсаторов пара F 28 В 1/00-5/00 F 21 V ламповых рефлекторов и осветительных приборов рефлекторов осветительных устройств) 7/20 29/00 ленточных пил В 27 В 13/16 литейных форм для (обработки расплава В 22 D 27/04-27/06 отливки стереотипов В 41 D 3/28) материалов (при дроблении В 02 С 11/08 В 65 (при загрузке или разгрузке баков, цистерн и т. п. D 88/74 при упаковке В 63/08) в промышленных печах F 27 D 15/02 при протягивании В 21 С 9/00-9/02) матриц при литье под давлением В 22 D 17/22 насосов (F 01-F 04 необьемного вытеснения F 04 D 29/58) перегретого пара в паровых котлах F 22 G 5/12-5 16 переносных инструментов ударного действия В 25 D 17/20-17/22 нечей F 27 (В 1/24 3/24, 7/38, 15/16  [c.128]


Наиболее исследованы характеристики высокотемпературной ПГУ по схеме ЦКТИ—ЛПИ [13 47 48 49]. Такая установка в простейшем варианте (рис. 29) состоит из компрессоров низкого КНД и высокого КВД давления, предвключенной паровой турбины ППТ — привода КВД, камеры сгорания КС, высокотемпературной газовой турбины ГТ с двухконтурным охлаждением, конденсационной паровой турбины КПТ, котла-утилизатора КУ и конденсатора К.  [c.58]

Установка представляет собой двухвальный агрегат, работающий по открытому циклу с промежуточным охлаждением воздуха. Атмосферный воздух в количестве 568 т/ч (расчетная температура 15° С) засасывается в 14-ступенча-тый компрессор низкого давления, где сжимается до 4 ama, затем проходит холодильник из ореб-ренных трубок, в котором температура воздуха понижается со 180 до 30° С, в компрессоре высокого давления воздух снова сжимается до 18 ama. Расход охлаждающей воды составляет около 1500 м ч. Расчетная температура рабочего газа перед газовой турбиной 650° С.Температура уходящих газов 330° С.  [c.73]


Смотреть страницы где упоминается термин Компрессоры газовые охлаждение : [c.18]    [c.137]    [c.305]    [c.211]    [c.183]    [c.122]    [c.168]    [c.37]    [c.156]    [c.236]    [c.180]    [c.179]    [c.188]    [c.144]    [c.45]    [c.12]   
Справочник энергетика промышленных предприятий Том 3 (1965) -- [ c.449 ]



ПОИСК



Газовые компрессоры

Компрессорий

Компрессоры

Охлаждение компрессоров



© 2025 Mash-xxl.info Реклама на сайте