Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Перегреватель

Перегретым паром называется пар, имеющий при данном давлении более высокую температуру, чем сухой насыщенный пар. Перегретый пар получается в специальном аппарате перегревателе из влажного пара при сообщении последнему некоторого количества теплоты. Теплотой перегрева принято называть то количество теплоты, которое необходимо затратить n i перегрев 1 кг сухого пара до требуемой температуры при постоянном давлении.  [c.181]


В перегревателе влажный пар сперва превращается в сухой, а затем в перегретый пар. Давление в перегревателе принимается постоянным и равным давлению в котле (в действительности немного падает).  [c.181]

В паротурбинных установках процесс получения работы происходит следующим образом (рис. 19-1). Химическая энергия топлива при его сжигании превращается во внутреннюю энергию продуктов сгорания, которая затем в виде теплоты передается воде и пару в котле / и перегревателе 2. Полученный пар направляется в паровую турбину 3, где и происходит преобразование теплоты в механическую работу, а затем обычно в электрическую энергию в электрогенераторе Отработавший пар поступает в конденсатор 5, где отдает теплоту охлаждающей воде. Полученный конденсат конденсационным насосом б направляется в питательный бак 7, откуда питательная вода забирается питательным иасосом S, сжимается до давления, равного давлению в котле, и подается через подогреватель 9 в паровой котел I.  [c.296]

На рис. 19-4 изображен идеальный цикл Ренкина в pv-ma-грамме. Точка 4 характеризует состояние кипящей воды в котле при давлении pi. Линия 4-5 изображает процесс парообразования в котле затем пар подсушивается в перегревателе — процесс 5-6, 6-1 — процесс перегрева пара в перегревателе при давлении pi. Полученный пар по адиабате 1-2 расширяется в цилиндре парового двигателя до давления р2 в конденсаторе. В процессе 2-2 пар полностью конденсируется до состояния кипящей жидкости np>i давлении р2, отдавая теплоту парообразования охлаждающей воде. Процесс сжатия воды 2 -3 осуществляется в насосе получающееся при этом повышение температуры воды ничтожно мало, и им в исследованиях при давлениях до 30—40 бар пренебрегают. Линия 3-4 изображает изменение объема воды при нагревании от температуры в конденсаторе до температуры кипения. Работа насоса изображается заштрихованной площадью 032 7. Энтальпия пара при выходе из перегревателя в точке 1 равна h и в Ts-диаграмме (рис. 19-5) изображается пл. 92 34617109. Энтальпия пара при входе в конденсатор в точке 2 равна jg и в Ts-диаграмме изображается пл. 92 27109. Энтальпия воды при выходе из конденсатора в точке 2  [c.298]

Одним из способов повышения степени сухости пара на выходе из турбины является вторичный его перегрев. Этот способ состоит в том, что перегретый пар из котла с начальными давлением и температурой поступает в первую ступень турбины, состоящей из нескольких ступеней, где расширяется по адиабате до некоторого давления р. . Образовавшийся пар отводят в специальный перегреватель, где он подвергается вторичному перегреву при постоянном давлении. Затем его снова возвращают в турбину, где пар продолжает расширяться до давления в конденсаторе. Такой цикл с вторичным перегревом пара представлен на рис. 19-10. Точка / соответствует начальному состоянию пара точка 2 — конечному состоянию пара за турбиной после вторичного перегрева точка 2 соответствует  [c.303]


Принципиальная тепловая схема ТЭЦ дана па рис. 19-18. ТЭЦ состоит из парового котла 1 с перегревателем 2, паровой турбины 3 с противодавлением р , вырабатывающей электроэнергию, тепловых потребителей 4 и насоса 5. Конденсатор в этой установке отсутствует. Давление рг определяется производственными условиями. Чем выше р , тем меньше выработка механической работы и тем меньше термический к. п. д. цикла  [c.311]

Температура пара, выходящего из перегревателя парового котла, равна 950° F. Перевести эту температуру в °С.  [c.14]

Существуют разные конструкции паровых котлов, но по существу все они представляют собой емкости из малоуглеродистой или низколегированной стали, обогреваемые горячими газами. Из котла пар может поступать в перегреватель, изготовленный из более легированной стали, и нагреваться до еще более высокой температуры. Для обеспечения максимальной теплопередачи котловые трубы обычно объединяют в пучок, а греющие газы подают в межтрубное пространство или, реже, в трубы. Пар после совершения работы или другого использования попадает в трубчатый конденсатор, обычно из сплавов на основе меди. Охлаждающая вода может быть как пресная, так и загрязненная, солоноватая применяют также морскую воду. Сконденсированный пар затем возвращается в котел, и цикл повторяется.  [c.282]

ОТ источника лучистой энергии 2 — приемник тепла 5 — потери излучением иН —аккумулирование с ЫН 5 — аккумулирование с НаР б — потери излучением ЫаР 7 — котел 5 — перегреватель 5 —1-й промежуточный подогреватель /б —2-й промежуточный подогреватель //—1-я ступень турбины 2 — 2-я ступень турбины /5 — 3-я ступень турбины 14 — генератор переменного тока /5 — радиатор-конденсатор /б — нагрузка 15 кВт /7 —устройства управления /б — иасос — тепловые потоки ------—трубопроводы для жидкости —паропроводы ------------------механические связи  [c.220]

Схема простейшей паросиловой установки представлена на рис. 18.1 (/ — питательный насос 2 — паровой котел 3 — перегреватель 4 — паровая турбина 5 — генератор 6 — конденсатор).  [c.572]

Рабочим телом в паросиловой установке является, как правило, вода, превращаемая в котле в насыщенный, а затем в пароперегревателе — в перегретый пар. Из перегревателя водяной пар поступает в турбину, где, расширяясь, производит полезную работу. Отработавший пар конденсируется, а конденсат при помощи питательного насоса снова подается в котел.  [c.572]

При работе с математической моделью нужно помнить, что давление в промежуточном перегревателе рп.п должно удовлетворять условию рк<Рп.п<Рь а начальная температура должна быть больше ( 1> 1н). Чтобы точка 3 также находилась в области перегретого пара, необходимо, чтобы температура п.п была достаточно большой (например,  [c.292]

Чтобы составить себе представление о том, какие значения термических к. п. д. возможны в описанном цикле, возьмем наиболее широкие пределы температур, возможные для основных типов существующих двигателей. Для п а -ровых двигателей максимальной температурой при современном состоянии техники является та, при которой могут безопасно и длительно работать лопатки турбин и трубки перегревателей, примерно — 650° С. Низшей температурой можно считать достижимую в конденсаторах турбин — около 25° С. Отсюда для наибольших перепадов температур в паровом двигателе термический к. п. д. цикла Карно составит  [c.98]

I 500—3 000° С. Это значительно выше того, что могут выдержать металлы, но стенки камеры, в которой происходит горение, можно охлаждать, к в этом случае такие температуры становятся приемлемыми. Однако конечная температура продуктов горения при расширении их в газовых турбинах до атмосферного давления оказывается еще значительно выше температуры окружающей среды, что неблагоприятно для термического к. п. д. цикла. Обратное наблюдается у другого рабочего тела — водяного пара. Он получается в перегревателе парогенератора путем подвода тепла от горячих газов через металлическую стенку труб перегревателя, и его температура всецело определяется жаропрочностью металла, которая не позволяет получать пар с температурами более 600—650° С, да и то при использовании весьма дорогих высоколегированных сталей. С другой стороны, как это было показано при анализе циклов паросиловых установок, конечная температура водяного пара при расширении его до принятых давлений в конденсаторе ненамного отличается от температуры окружающей среды, что благоприятно для экономичности цикла. Рассмотренные свойства того и другого рабочего тела привели к мысли о создании бинарного цикла, т. е. такого цикла, в котором участвовали бы два рабочих тела, каждое из которых вносило бы в цикл свое благоприятное для термического к. п. д. СВОЙСТВО. Такой бинарный цикл получил название парогазового цикла. В нем в высокотемпературной части рабочим телом служат продукты горения топлив, а в низко-  [c.193]


Для пара в трубках перегревателя. . 100— 2 000  [c.219]

Рабочим телом в паросиловой установке является обычно вода превращаемая в котле в насыщенный, а затем в пароперегревателе — в перегретый пар. Из перегревателя водяной пар поступает в турбину, где, расширяясь, производит полезную работу. Отработавший пар кон-426  [c.426]

Схема паросиловой установки с промежуточным перегревом пара теплом отходящих газов представлена на рис. 14-28. Пар из перегревателя 1 с температурой и давлением pi поступает в начальную часть (ступень высокого давления) турбины 2, где в процессе 1Ь (рис. 14-26)  [c.440]

Начнем анализ потерь работоспособности с рассмотрения котельного агрегата (схема прямоточного котла приведена на рис. 14-33 7 — радиационная поверхность 2 — перегреватель 3 — водяной экономайзер 4 — воздухоподогреватель 5 — сепаратор).  [c.445]

Промежуточные перегреватели и дополнительные паропроводы горячего и холодного промежуточного пара с арматурой значительно усложнили тепловую схему ТЭС, схему регулирования работы котлов и турбин на ТЭС с поперечными связями (рис. 3, а). Во все котлы I вода подается из общей питательной магистрали 6, а свежий пар собирается в общем главном паропроводе 5. В этом случае все котлы ТЭС соединены трубопроводами воды и пара. В блочных схемах (рис. 3, б) котел 1, турбина 2, генератор 3 и трансформатор не соединены с другим аналогичным оборудованием. Теплосиловое оборудование, связанное таким образом, представляет энергетический блок.  [c.6]

Конвективные перегреватели 16 устанавливают в газоходах в переходном горизонтальном или в начале (по ходу газов) конвективной шахты.  [c.10]

Совокупность последовательно расположенных по ходу рабочего тела поверхностей нагрева, соединяюш,их их трубопроводов и установленных дополнительных устройств составляет пароводяной тракт котла. В основной пароводяной тракт котла, схема которого показана на рис. 5, входят экономайзер 18, отводящие трубы, барабан 14, опускные трубы 10 и нижний распределительный коллектор 6, экраны, потолочный перегреватель, первая и вторая ступени конвективного перегревателя 16. Промежуточный перегреватель 17 является элементом пароводяного тракта промежуточного перегрева пара.  [c.10]

По виду пароводяного тракта различают барабанные (рис. 6, а, б) и прямоточные (рис. 6, в) котлы. Во всех типах котлов через экономайзер 1 и перегреватель 6 вода и пар проходят однократно. В барабанных котлах пароводяная смесь в испарительных поверхностях нагрева 5 циркулирует многократно (от барабана 2 по опускным трубам 3 к коллектору 4 и барабану 2). Причем в котлах с принудительной циркуляцией (рис. 6, б) перед входом воды в испарительные поверхности 5 устанавливают дополнительный насос 8. В прямоточных котлах (рис. 6, в) рабочее тело по всем поверхностям нагрева проходит однократно под действием напора,  [c.11]

Барабанные котлы широко применяют на ТЭС. Наличие одного или нескольких барабанов с фиксированной границей раздела между паром и водой является отличительной чертой этих котлов. Питательная вода в них, как правило, после экономайзера 1 (см. рис. 6, а) подается в барабан 2, где смешивается с котловой водой (водой, заполняющей барабан и экраны). Смесь котловой и питательной воды по опускным необогреваемым трубам 3 ИЗ барабана поступает в нижние распределительные коллектора 4, а затем в экраны 5 (испарительные поверхности). В экранах вода получает теплоту Q от продуктов сгорания топлива и закипает. Образующаяся пароводяная смесь поднимается в барабан. Здесь происходит разделение пара и воды. Пар по трубам, соединенным с верхней частью барабана, направляется в перегреватель 6, а вода снова в опускные трубы 3.  [c.14]

Потолок топки, горизонтального газохода и поворотной камеры экранированы трубами перегревателя 7 высокого давления.  [c.18]

В конвективной шахте размещены (последовательно по ходу газов) выходной 8 и входной 10 пакеты перегревателя низкого давления, первая (по ходу пара) ступень 11 перегревателя высокого давления и экономайзер 12. Два регенеративных воздухоподогревателя (РВП) установлены вне здания котельной.  [c.18]

Иногда серьезные проблемы вызывает коррозия котлов и труб перегревателей со стороны греющего газа, особенно если в качестве топлива применяется нефть, содержащая ванадий. Существо этого вопроса рассмотрено в разд. 10.7. Современная котельная технология обеспечивает удаление растворенного кислорода из питающей воды. Поэтому на поверхности оборудования со стороны водяного пара протекает реакция между HjO и Fe, в результате чего образуется защитная пленка магнетита FesOi  [c.282]

На рис. 18.21 изображен цикл с промежуточным перегревом, а на рис. 18.22 схема паросиловой установки с промежуточным перегревом пара за счет отходящих газов. Пар из перегревателя 1 с температурой и давлением р поступает в начальную часть (ступень высокого давления) турбины 3, где в процессе 1Ь адиабатически расширяется до некоторого давления р[. После этого пар в промежуточном перегревателе 2 нагревается при постоянном давлении р[ до температуры процесс Ьа называется промежуточным перегревом пара. Далее пар поступает во вторую ступень турбины 4, где адиабатично расширяется по а2 до конечного давления р. ъ конденсаторе 5.  [c.580]

Рабочим телом в паросиловой установке является вода, превращаемая в насыщенный, а затем в перегретый пар. Из перегревателя водяной пар поступает в турбину, где, расширяясь, производит полезную работу. Отработавший пар конденсируется, а конденсат при помощи питательного насоса вновь поступает в котел. В отличие от двигателей внутреннего сгорания в паросиловой установке продукты сгорания топлива непосредственно не участвуют в рабочем цикле, они являются лишь источником теплоты (тенлоотдатчиком).  [c.539]


Стали 15, 20, 25 чаще применяют без термической обработки или в нормализованном состоянии. Низкоуглеродистыс качественные стали используют и для ответственных сварных конструкций, а также, зля деталей машин упрочняемых пе.ментацией. Сталь 20 применяется для изготовления трубопроводов, змеевиков, труб перегревателей, трубных п чков теплообменных аппаратов, работающих от минус 40 до плюс 475 С.  [c.85]

Процесс изменения состояния рабочего тела в насосе происходит так, что ни температура, ни энтропия воды ПОЧТИ не изменяются, и ее состояние по выходе из насоса (точка 4) совпадает с состоянием в точке 3. Нагревание воды в котле при постоянном давлении изобразится изобарой 4-5, которая на основании сказанного s 3-3 совпадает с нижней пограничной кривой. Точка 5 характеризует состояние воды в котле при температуре кипения ta- Процесс парообразования, протекающий при t = == onst (и при р = onst), изобразится прямой 5-6, параллельной оси абсцисс, а перегрев пара, происходящий прир = onst, — изобарой б-/, являющейся продолжением изобары 4-5-6. Точка / характеризует состояние пара по выходе его из перегревателя парового котла. Адиабатное расширение изобразится прямой 1-2, параллельной оси ординат. Расширение закончится в точке 2, лежащей на той же изобаре, что и точка 3, так  [c.173]

На рис. 7.12 изображена схема ЭХТС производства слабой азотной кислоты под давлением 0,716 МПа. Жидкий аммиак поступает в испаритель аммиака 4, где он испаряется за счет теплоты охлаждения воды (при этом получается побочный продукт — охлажденная вода). Образующийся газообразный аммиак далее поступает в перегреватель 6  [c.330]

Ввиду неравномерного использования электроэнергии в течение суток, недели, месяца и года возникает необходимость в частых остановах и последующих пусках энергоблоков. При останове энергоблока и отключении генератора 3 и турбины 2 значительные расходы пара, аккумулированного в котле / (рис. 4, а), надо быстро сбросить помимо турбины 2 (через байпас) в конденсатор 4. Если в котле имеется промежуточный перегреватель 7, установленный в зоне высоких температур, то, байпасируя цилиндр высокого давления (ЦВД) турбины, пар направляют через редукционно-охладительную установку 6 (РОУ) на охлаждение промежуточного перегревателя. Затем пар подают в конденсатор через РОУ 5. Энергоблоки с такой схемой байпасирования турбины получили название двухбанпасных. Наличие байпасных паропроводов с арматурой и системами регулирования, которые должны срабатывать быстро и синхронно, усложняет работу энергоблока.  [c.7]

В последнее время больщое распространение получила однобайпасная схема энергоблока (рис. 4, б). Пар, минуя оба корпуса турбины и промежуточный перегреватель, сразу сбрасывается в конденсатор 4 через пуско-сбросное устройство 6 (ПСБУ). В котлах таких энергоблоков промежуточные перегреватели размещают в зоне умеренных температур. В этом случае пуск энергоблока можно проводить без охлаждения промежуточного перегревателя, т. е. без подачи в него пара.  [c.7]

Перегреватели (перегревательные поверхности нагрева) могут быть радиационными, ширмовыми и конвективными. Радиационные перегреватели располагают на стенах топки или на ее потолке и соответственно называют настенным радиационным или потолочным перегревателем. Ширмовые перегреватели 15 —поверхности нагрева, в которых ширмы расположены с большим поперечным шагом (не менее пяти диаметров трубы), — получают теплоту газов излучением и конвекцией примерно в равных количествах.  [c.10]

Топка оборудована двенадцатью газомазутнымн горелками 1, установленными в два яруса на одной стенке. В ее верхней части расположен ширмовый перегреватель 4. В горизонтальном газоходе помещены два пакета конвективного перегревателя 5 высокого давления.  [c.18]

I — нельница J — топка S — пароперегреватель 4 — промежуточный перегреватель е — эконоыайэер 6 — воздухоподогреватель / — первичный воздух // — вторичный воздух  [c.31]


Смотреть страницы где упоминается термин Перегреватель : [c.24]    [c.304]    [c.304]    [c.309]    [c.327]    [c.221]    [c.221]    [c.289]    [c.170]    [c.182]    [c.441]    [c.6]    [c.7]    [c.20]    [c.20]   
Конструкция и расчет котлов и котельных установок (1988) -- [ c.10 , c.11 , c.94 ]

Материалы ядерных энергетических установок (1979) -- [ c.182 ]

Цифровые системы управления (1984) -- [ c.310 ]



ПОИСК



Байпасирование пара в газовой ступени вторичного перегревателя

Вода для впрыскивающих пароохладителей и место рассечки перегревателя для их установки

Динамические свойства подогревателей и перегревателей

Динамические характеристики перегревателей и автоматизация регулирования перегрева поворотными горелками и рециркуляцией газов

Запасные части к топкам, экранам, перегревателям, водяным экономайзерам, воздухоподогревателям, золоуловителям и трубопроводам

Изменение омывания газами поверхности перегревателя

Комбинированные радиационно-конвективные перегреватели

Коэфициен без перегревателя

Мероприятия по уменьшению температурной неравномерности пара в змеевиках перегревателя

Общие сведения. Устройство элементов. Присоединение элементов к коллектору. Камерные перегреватели

Оптимальные скорости дымовых газов для перегревателей и экономайзеров

Особенности вторичных перегревателей пара

Особенности регулирования вторичного перегрева пара. Воздействие на паровую сторону перегревателя

Охлаждение труб перегревателей при растопке

ПРЕССЫ Штампы для колпачка перегревателя

Перегреватели в производстве

Перегреватели в производстве а-метилстирола

Перегреватели в производстве бутадиена из бутана

Перегреватели в производстве бутадиена из спирта

Перегреватели в производстве изопрена из изопентана

Перегреватели в производстве спирта из эфира

Перегреватели эксплоагация

Перегреватели, промывка

Перегреватели, экономайзеры, воздухоподогреватели

Перегреватель конвективный

Перегреватель пара

Перегреватель промежуточный

Перегреватель радиационный

Перегреватель ширмовый

Присосы воздуха и обмуровка тоДогорание в области перегревателя

Промежуточные сепараторы и сепараторы-перегреватели

Расчет вторичного перегревателя

Расчет конвективного перегревателя

Расчет перегревателя

Регулирование температуры пара в паропаровых и комбинированных (парогазовых) вторичных перегревателях

Ремонт труб экранов, котла и перегревателя

Скорость пара в перегревателе

Снятие эпюр температурных полей и напряжений в коллекторах перегревателей и контроль за работой пароохладителей

Сопротивление змеевиковых пакетов (перегреватели, гладкотрубные экономайзеры и переходные зои ширмовых поверхностей

Схемы АЭС, особенности анализа схем с сепараторами и паро-паровыми перегревателями (осушителями)

Схемы включения перегревателя в поток газов

Тепловые без перегревателя - Теплопередача

Уменьшение поверхности нагрева перегревателя

Центральный перегреватель



© 2025 Mash-xxl.info Реклама на сайте