Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энергия кинетическая механических систем линейных

Определение 8.7.1. Механическая система называется позиционной линейной системой, если ее кинетическая энергия есть положительная симметричная квадратичная форма обобщенных скоростей  [c.572]

Механические системы, для которых квадратичные выражения для кинетической и потенциальной энергий (57) и (60), являются точными без отбрасывания членов более высокого порядка, называются линейными. Для линейных систем дифференциальные уравнения (63) являются точными, а не приближенными, как в случае малых колебаний. Математическая теория малых колебаний не отличается от теории линейных колебаний. Но линейные колебания могут быть не обязательно малыми.  [c.435]


Случай дискретной системы. Пусть процесс таков, что в (15.25) 65 = 0, 6Т = 0 и ЬО = Ш, т, е. к телу подводится только механическая энергия, кинетическая энергия тела не возникает и внутренняя энергия равна потенциальной энергии деформации. Тогда (15.24) приобретает вид 8А=би. Закон сохранения энергии (15.25) соблюдается в процессе всего нагружения. Поэтому работа внешних сил, которая в случае линейно упругой системы  [c.483]

Составляющие системы уравнений (6.8) М — массу механической системы, приведенную к нагнетательному трубопроводу, и All, М2 — приведенные массы упругих звеньев (жидкости в нагнетательном и сливном трубопроводе длиной Zj и /3 находят из условия сохранения кинетической энергии системы, принимая линейное изменение скорости по длине  [c.157]

Общая теория обратимого электромеханического преобразователя может быть построена на основании энергетических соотношений в динамической системе с многими степенями свободы. Эти соотношения определяются функцией Лагранжа, которая представляет собой разность кинетической я потенциальной энергии системы. Каждая степень свободы характеризуется обобщенными скоростью и перемещением. Обобщенные перемещения в частном случае могут быть линейным отклонением от положения равновесия, углом поворота в механической системе или электрическим зарядом в электрической цепи и т. п. Кинетическая и потенциальная энергии системы будут квадратичными функциями обобщенных скоростей (л ) и перемещений (х).  [c.56]

Постановка задачи. Выразить кинетическую энергию механической системы с одной степенью свободы через угловую скорость одного из тел системы или линейную скорость какой-либо ее точки.  [c.241]

При исследовании движения механических систем методом канонических уравнений Гамильтона полезно придерживаться следующего порядка вычислений. Как и в методе уравнений Лагранжа 2-го рода, прежде всего устанавливаем число степеней свободы рассматриваемой механической системы точек. Затем выбираем независимые обобщенные координаты и составляем выражения для кинетической и потенциальной энергии в функции обобщенных координат и обобщенных скоростей. Составив функцию L = T+U T—V, по формулам (62) находим обобщенные импульсы pi, р2,. .Ps. Разрешая полученную систему линейных уравнений относительно обобщенных скоростей, мы можем по формуле (64) найти И в функции канонических переменных qu 2,. , qs, pu р2,. .., Ps H времени t Зная функцию H = H qu Ръ Ps, 0. можно написать канонические уравнения (67) и затем интегрировать полученную систему уравнений.  [c.515]


С помощью теоремы об изменении кинетической энергии решается как прямая, так и обратная задачи динамики. В дифференциальной форме теорема применяется для. того, чтобы найти по заданным силам ускорения точек системы (или наоборот), т. е. чтобы составить дифференциальные уравнения движения системы и интегрированием этих ураннений найти законы изменения скоростей и перемещений точек системы. Интегральная форма теоремы используется в тех случаях, когда при конечном перемещении системы заданы три из следующих четырех величин скорости, перемещения, силы, массы, а четвертая подлежит определению. Теорема чаще всего применяется для исследования движения механических систем с одной степенью свободы, т. е. систем, положение которых определяется одной координатой (линейной или угловой). Поэтому в данной главе мы будем рассматривать только такие системы.  [c.226]

Резюме. Возможность введения произвольных координатных систем и инвариантность уравнений механики относительно преобразований координат тесно связывают аналитическую механику с идеями и методами римановой геометрии. Движение произвольной механической системы мол<ет рассматриваться как движение свободной частицы в соответствующем п-мерном пространстве с определенной римановой структурой. Кинетическая энергия системы определяет ри-манов линейный элемент пространства конфигураций.  [c.46]

Наш вывод показывает, что обычная формулировка теоремы о сохранении элергии сумма кинетической и потенциальной энергий в процессе движения остается постоянной справедлива лишь при определенных ограничивающих условиях. Недостаточно, чтобы система была склерономной. Необходимо, помимо этого, чтобы кинетическая энергия была квадратичной формой скоростей, а потенциальная энергия не содержала скоростей вообще. Встречаются, однако, механические системы с гироскопическими членами , линейными относительно скоростей. Более того, в релятивистской механике кинетическая часть фуикции Лагранжа зависит от скоростей более сложным образом, чем в ньюто-  [c.148]

Эта формула и представляет собой общее решение задачи определения послеударного состояния произвольной механической системы по известному доударному в случае идеального удара (идеальных связей). Здесь д — доударные скорости, д Ч- Ад — послеударные, е — единичный вектор нормали к связи в точке удара, А — матрица квадратичной формы кинетической энергии, Ь — коэффициенты линейной формы кинетической энергии, возникающие в случае нестационарной параметризации.  [c.141]

В случае механических систем (а именно такие системы мы будем далее изучать в курсе Механика ) движущимися объектами являются точечные массы или физически малые элементы объема материальной среды (жидкости, газа, твердого тела и т.д.). Поэтому при описании колебаний таких систем функцияДд ,з , г, ) может характеризовать смещение (линейное или угловое), скорость, ускорение, деформацию, кинетическую или потенциальную энергию, давление и пр.  [c.5]


Смотреть страницы где упоминается термин Энергия кинетическая механических систем линейных : [c.474]    [c.166]    [c.67]   
Прочность, устойчивость, колебания Том 3 (1968) -- [ c.237 ]

Прочность Колебания Устойчивость Т.3 (1968) -- [ c.237 ]



ПОИСК



Кинетическая системы

Кинетическая энергия системы

Кинетическая энергия—см. Энергия

Механические Энергия кинетическая

Механические системы линейные

Механические системы механических систем

Система линейная

Система механическая

Энергия кинетическая

Энергия кинетическая (см. Кинетическая

Энергия кинетическая (см. Кинетическая энергия)

Энергия кинетическая механической систем

Энергия механическая

Энергия системы



© 2025 Mash-xxl.info Реклама на сайте