Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поглощение вынужденное

Если средняя частота линии значительно превосходит ее ширину, то в пределах последней множитель со можно считать практически постоянным. В этом случае, следовательно, линии поглощения, вынужденного и спонтанного испускания имеют подобные контуры.  [c.738]

В 157, 224 мы познакомились с причиной первого типа — с изменением разности заселенностей уровней, обусловленным поглощением, вынужденным испусканием и конечной продолжительностью возбужденных состояний. Если изменения заселенностей сравнительно невелики, то из соотношения (224.3) видно, что  [c.833]


Руководствуясь данными табл. 7.20 и 7,21 при выборе материала для конкретных применений, необходимо иметь в виду их относительный характер, что требует в каждом случае дополнительного анализа, учитывающего, в частности, особенности режимов эксплуатации устройств. Кроме перечисленных пассивных нелинейных оптических явлений в веществе могут проходить и так называемые активные нелинейные оптические процессы. К ним относятся, например, процессы многофотонного поглощения, вынужденного рассеяния Мандельштама—Бриллюэна, вынужденного комбинационного рассеяния света и некоторые другие. Физической основой этих процессов является то обстоятельство, что вблизи резонансных частот взаимодействия восприимчивости приобретают комплексный характер. Детальное рассмотрение всей со-  [c.239]

Равновесной тепловой населенностью всех уровней, кроме самого нижнего Ng, можно пренебречь Рассчитайте основные характеристики лазера на алюмо-иттриевом гранате с неодимом (N(1 У АС лазер) в режиме непрерьшной генерации мощность генерации при Г1 1,2, пороговую разность населенностей КПД. Длина волны изучения такого лазера = 1,06 мкм, = 0,55 мс, сечение поглощения (вынужденного излучения) в центре рабочего перехода о - 9 10" см ,л = 1,5, время жизни фотона в резонаторе 10 не. Му 5 10 см .  [c.23]

К равенству единице отношения излучательной способности к поглощательной только в условиях черного тела, т. е. при равенстве излучательно-поглощательных условий. Второе определение утверждает, что полное поглощение — это индуцированное поглощение минус вынужденное излучение, т. е. вынужденное излучение рассматривается как отрицательное поглощение. Полное излучение — это просто спонтанное излучение. Это второе определение, по-видимому, справедливо для любых условий теплового излучения независимо от того, существует или не существует равновесие. Кроме того, второе определение лучше соответствует экспериментальному определению поглощения. Экспериментально нет возможности отделить индуцированное поглощение от вынужденного излучения.  [c.326]

В условиях вынужденной конвекции критерии Nu и Nud зависят не только от характера потока (Re) и физических свойств среды (р и Ргд), но и от термодинамических свойств среды (Gu). Термодинамический критерий испарения Gu характеризует аккумулирующую способность парогазовой смеси к поглощению пара жидкости.  [c.511]

Наряду с вынужденным излучением света атомами, находящимися на верхнем уровне е , происходит резонансное поглощение энергии атомами, находящимися на нижнем уровне е . При этом атом поглощает световой квант и переходит на уровень е , что препятствует генерации света. Для генерации когерентного света необходимо, чтобы число атомов на верхнем уровне Ей было больше числа атомов на нижнем уровне e , между которыми происходит переход. В естественных условиях на более высоком уровне при любой температуре всегда меньше частиц, чем на более низком. Для возбуждения когерентного излучения надо принять специальные меры, чтобы из двух выбранных уровней верхний был заселен больше, чем нижний. Такое состояние вещества в физике называется активным или состоянием  [c.119]


Спонтанное и вынужденное испускание, поглощение. Если данный атом в произвольный момент времени t находился в возбужденном энергетическом состоянии Е , то через интервал времени dt этот атом может либо остаться в том же состоянии, либо самопроизвольно (спонтанно) перейти в нижнее основное состояние с энергией El (рис. 15.1). При этом возникает фотон с энергией hv — = 2 — 1- Испускание подобного рода — испускание света атомами при их самопроизвольном переходе с возбужденных уровней на более низкие энергетические уровни — называется спонтанным испусканием (излучением). Поскольку спонтанный переход происходит независимо от действия внеш-  [c.339]

Этот процесс называется поглощением. В отличие от спонтанного излучения вероятность вынужденного перехода с основного состояния в возбужденное будет пропорциональна плотности излучения, вызвавшего этот переход.  [c.339]

Первый член в формуле (17.3) выражает уменьшение, а второй — увеличение интенсивности света при его прохождении через среду толщиной dx благодаря процессам соответственно поглощения и вынужденного излучения. Поскольку Ву = Sgi и I =- vw (v), то из (17.3) получаем  [c.380]

Итак, вместо двух процессов (излучение и поглощение света), которые обычно учитывают в термодинамике излучения, нужно исследовать три возможных вида переходов, введя вынужденное излучение (рис. 8.11).  [c.428]

Как отмечалось в первом томе, резонанс возникает при вынужденных колебаниях в результате притока энергии в систему извне. При особых условиях поглощения системой внешней механической энергии амплитуда возрастает, и возникает резонанс. В случаях, рассмотренных в первом томе, резонанс возникал, если период свободных или собственных колебаний совпадал с периодом возмущающей силы. Физически резонанс проявлялся в возрастании амплитуды вынужденных колебаний.  [c.308]

Особенности отражения света от металлической поверхности обусловлены наличием в металлах большого числа электронов, настолько слабо связанных с атомами металла, что для многих явлений эти электроны можно считать свободными. Вторичные волны, вызванные вынужденными колебаниями свободных электронов, порождают сильную отраженную волну, интенсивность которой может достигать 95% (и даже больше) интенсивности падающей, и сравнительно слабую волну, идущую внутрь металла. Так как плотность свободных электронов весьма значительна (порядка 10 в 1 см ), то даже очень тонкие слои металла отражают большую часть падающего на них света и являются, как правило, практически непрозрачными. Та часть световой энергии, которая проникает внутрь металла, испытывает в нем поглощение. Свободные электроны, приходя в колебание под действием световой волны, взаимодействуют с ионами металла, в результате чего энергия, заимствованная от электромагнитной волны, превращается в тепло.  [c.489]

Кроме спонтанного испускания и поглощения, Эйнштейн ввел представление еще об одном радиационном процессе, — индуцированном (или вынужденном, или стимулированном) испускании. Индуцированное испускание, в отличие от спонтанного, состоит в испускании фотона под действием внешнего электромагнитного поля атом, находящийся в энергетически более высоком состоянии ( т). переходит в состояние с меньшей энергией ( ), и излучается фотон с частотой Ытп = Вт — Еп)/Н. Энергия, излучаемая в результате вынужденных переходов, и их число в единице объема за единицу времени записываются аналогично (211.5) и (211.6)  [c.734]

Величина Втп называется коэффициентом Эйнштейна для вынужденного (индуцированного) испускания. Если поле отсутствует и (( >тп)— 0), то вынужденные переходы не происходят. Таким образом, внешнее поле вызывает переходы, сопровождающиеся как поглощением, так и испусканием фотонов.  [c.735]

Указанное свойство вынужденного испускания существенно для понимания связи между коэффициентом поглощения и введенными выше вероятностями поглощения и испускания. Исследование абсорбции света в каком-либо веществе состоит в сравнении интенсивности света, прошедшего вещество, с интенсивностью падающего на него излучения. Если в веществе находятся возбужденные атомы, то кроме переходов, связанных с поглощением фотонов, будут происходить и вынужденные переходы. Как было сказано, вынужденно испущенные фотоны неотличимы от фотонов падающего света, т. е. вынужденные переходы частично компенсируют убыль фотонов в прошедшем пучке, обусловленную поглощательными переходами.  [c.739]


В соответствии с качественными соображениями о роли вынужденных переходов возбужденные атомы уменьшают величину коэффициента поглощения. С некоторыми экспериментальными проявлениями этого обстоятельства мы уже встречались ранее при обсуждении отрицательной дисперсии (см. 156) и опытов Вавилова, посвященных зависимости коэффициента поглощения от интенсивности света (см. 157).  [c.740]

До сих пор речь шла об энергетической стороне вопроса. Как подчеркивалось в 211, электромагнитные волны, возникающие в результате вынужденных переходов, когерентны с волной, вызывающей эти переходы. В частности, если поле, взаимодействующее с атомами, представляет собой плоскую монохроматическую волну, то и вынужденно испущенные фотоны образуют также плоскую монохроматическую волну с той же частотой, поляризацией, фазой и с тем же направлением распространения. В результате вынужденного испускания (равно как и поглощения) изменяется только амплитуда падающей волны.  [c.775]

Сказанное можно рассматривать как иную форму утверждения, что вынужденное испускание усиливает, а поглощение ослаб-  [c.775]

Этот же термин применяется и к явлению уменьшения разности заселенностей под влиянием вынужденного излучения и поглощения.  [c.778]

При анализе эффекта насыщения подразумевалась инверсная заселенность уровней, т. е. N t > Если Nm <С Л/л, ТО соотношения (224.2) — (224.4) остаются в силе, но число переходов с поглощением превышает число переходов с вынужденным испусканием, и в итоге среда не отдает энергию в поле, а получает ее из поля.  [c.778]

Определить заселенности У , уровней т, п атома, принимая во внимание вынужденное испускание и поглощение, обусловленные взаимодействием с монохроматическим полем, частота которого соответствует переходу т- п. Вычислить также поглощенную (излученную) мощность и коэффициент поглощения (усиления).  [c.907]

Во-первых, коэффициент поглощения зависит от длины волны и поэтому закон Бугера — Ламберта — Бера справедлив лишь для строго монохроматического излучения. Дисперсия величины к становится особенно сильной вблизи резонанса частоты падающего света с частотами собственных колебаний электронов в атомах. При этом резко возрастают амплитуды вынужденных колебаний электронов и увеличивается вероятность перехода их энергии в энергию хаотического теплового движения. Таким образом, излучение различных длин волн на одном и том же участке пути поглощается в различной степени, а лучи с частотами, близкими к резонансной, практически полностью поглощаются в слое очень малой толщины.  [c.100]

Рассматривая испускание и поглощение энергии атомами, Эйнштейн выделил три процесса спонтанное испускание, поглощение и вынужденное испускание. Все рассмотрение строится статистически, т. е. с использованием понятия вероятности.  [c.142]

Спонтанная люминесценция (рис. 34.1,6) отличается от резонансной флуоресценции тем, что после поглощения фотона молекула очень быстро (за время около с) безызлучательно переходит на уровень 3, с которого происходит излучение. Этот вид люминесценции характерен для сложных молекул в парах и растворах. Вынужденная люминесценция (рис. 34.1, в) характеризуется тем, что после поглощения кванта света молекула обычно безызлучательно попадает в состояние 4, которое имеет большее время жизни, чем время жизни возбужденного состояния 3. В результате внешнего воздействия она может попасть в состояние 3 и затем перейти в основное состояние 1 с испусканием фотона частоты vзl. В частности, если безызлучательный переход с уровня 4 на уровень 3 произошел за счет теплового движения молекул, то такая флуоресценция называется замедленной.  [c.248]

В основе работы оптического квантового генератора лежат следующие процессы взаимодействия электромагнитной волны с веществом спонтанное и вынужденное испускание и поглощение.  [c.267]

В общем случае в разложении поляризации по степеням поля необходимо учитывать также низкочастотные поля. Большинство нелинейных эффектов связано с членами ряда, пропорциональными квадрату и кубу амплитуды электрического поля. Квадратичная поляризация обусловливает существование таких эффектов, как генерация второй гармоники, оптическое выпрямление, линейный электрооптический эффект (эффект Поккельса) и параметрическая генерация. К эффектам, обязанным своим существованием поляризации, кубичиой по полю, откосятся геиерация третьей гармоники, квадратичный электрооптический эффект (эффект Керра), двухфотонное поглощение, вынужденное комбинационное рассеяние, вынужденное рассеяние Мандельштама — Бриллюэ-ка и вынужденное ралеевское рассеяние.  [c.860]

Данная глава, как мы условились в разд. 1.5, посвящена взаимодействию излучения с веществом. Это очень широкая область науки, иногда называемая фотофизикой. Здесь мы ограничимся обсуждением лишь явлений, имеющих непосредственное отношение к веществу, используемому как активная среда лазера. Вводный раздел посвящен теории излучения черного тела, на которую опирается вся современная физика излучения. Затем мы рассмотрим элементарные процессы поглощения, вынужденного излучения, спонтанного излучения и безызлучательной релаксации, На первом этапе это изучение будет проводиться ради простоты для разреженных сред и малой интенсивности излучения. Кроме того, будем вначале считать, что среда состоит только из атомов. Затем будут рассмотрены случаи высокой интенсивности излучения и плотных сред (когда возникают такие явления, как насыщение, суперизлучение, суперлюминесценция и усиленное спонтанное излучение). В последнем разделе мы обобщим некоторые из полученных результатов на более сложный случай молекулярной системы. Некоторые весьма важные, хотя и не столь общие вопросы, касающиеся фотофизики полупроводников, молекул красителей и центров окраски, мы кратко обсудим в гл. 6 непосредственно перед рассмотрением соответствующих лазеров.  [c.25]


Лишь в некоторых простых схемах соединений поглощение энергии за один цикл можно вычислить с помопхью теоретического расчета. Более надежные оценки рассеяния энергии могут быть получены экспериментальным путем — либо по параметрам резонансного пика в режиме моногармонических вынужденных колебаний, либо по огибающей свободных затухающих колебаний.  [c.282]

Взаимодействие света с металлом приводит к возникновению вынужденных колебаний свободных электронов, находящихся внутри металлов. Такие колебания вызывают вторичные волны, приводящие к сильному отражению света от металлической поверхности и сравнительно слабой волне, идущей внут])ь металла. Чем больше электропроводность металлов, тем сильнее происходит отражение света от нх поверхности. В идеальном проводнике, для которого а -> оо, поглощение полностью отсутствует н весь падающий на его поверхность свет отражается. Поэтому заметный слой металла является непрозрачным для видимого света. Сильное поглощение проникающей внутрь металла световой волны обусловлено превращением энергии волны в джоулево тепло благодаря взаимодействию почти свободных электро1Юв, испытываюидих вынужденные колебания под действием световой волны.  [c.61]

Кроме спонтанных излучачельных переходов должны иметь место переходы с -го на т-й уровень, сопровождающиеся погло-п еЕ1ием излучения атомной системой. Е1е составляет труда оценить скорость dN /At процесса поглощения излучения, используя принятое статистическое описание. Д.1я этого обозначим через Bnmifi, соответствующую вероятность перехода, а через N ч (. атомов на -м уровне. Нужно также учесть, что каждый атом черпает энергию из окружающей среды, т.е. эти переходы происходят под действием некоторой вынуждающей силы. Тогда для процесса поглощения энергии, сопровождающегося вынужденным переходом с п-го на т-й уровень, справедливо соотно-  [c.427]

Но и в оптическом диапазоне вынужденным излучением нельзя пренебречь. Действительно, представим себе, что при проведенном выводе не учтено соответствующее число dN вынужденных переходов. Тогда нужно было бы приравнять число спонтанных переходов числу актов поглощения и вместо формулы Планка получилось бы некое выражение (которое также часто связывают с именем физика Вина), хорошо описывающее ход г,,у лигпь в области малых длин волн (г.е. когда hv кТ). Учет вынужденного излучения приводи к формуле Планка, отлично согласуюп ейся с опытом во всем оптическом диапазоне.  [c.430]

Можно также заметить, что осмыслить понятие вынужденного излучения с позиций какой-либо одной теории света достаточно трудно. Для того чтобы описать усиление сигна та (( отрицательное поглощение-)), удобно по.тьзоваться терминами квантовой оптики, сводя вопрос к рождению новых фотонов при прохождении светом активной среды. Но при последующем описании свойств таких фотонов удобно пользоваться терминами и понятиями волновой оптики, указав, что фазы вторичных волн жестко связаны (полностью скоррелированы).  [c.462]

Поглощенная световая энергия в самом общем и наиболее распространенном случае переходит в тепло, несколько повышая температуру поглощающего тела. Но нередко лишь часть световой энергии переходит в тепло, другая же испытывает иные превращения, вызывая те или иные действия свел а. В настоящем разделе мы не будем рассматривать тех случаев, когда в результате воздействия света тело само становится источником и испускает излучение собственной или вынужденной частоты. Часть таких процессов (излучение вынужденных частот) была рассмотрена в гл. XXIX (рассеяние света). Другая их часть (излучение собственных частот) будет обсуждаться в гл. XXXVIII. Настоящий же раздел посвящен вопросам превращения световой энергии в механическую энергию электронов (фотоэффект и явление Комптона) или всей поглощающей системы (давление света), а также различным химическим действиям света (фотохимия, фотография, физиологическая оптика).  [c.633]

Перейдем к вопросу о контуре линии поглощения. Для его измерения нужно осветить поглощающий газ монохроматическим светом, либо, что физически эквивалентно, провести спектральное разложение света, прошедшего через газ, и проследить за отдельными монохроматическими составляющими. Аналогичным образом исследуется и контур линии вынужденного испускания. В соответствии с этим рассматривают мощность, поглощаемую и инду-цированно испускаемую в единице объема и в интервале частот с(со при переходах п - т тл т п соответственно  [c.738]

Оптические квантовые генераторы оказали и, несомненно, будут оказывать в дальнейшем значительное влияние на развитие оптики. Изучение свойств самих лазеров существенно обогатили наши сведения о дифракционных и интерференционных явлениях (см. 228—230). Распространение мощного излучения, испущенного оптическим квантовым генератором, сопровождается так называемыми нелинейными явлениями. Некоторые из них — вынужденное рассеяние Мандельштама — Бриллюэна, вынужденное рассеяние крыла линии Рэлея и вынужденное температурное рассеяние — описаны в главе XXIX выше упоминались также многофотонное поглощение и многофотонная ионизация (см. 157), зависимость коэффициента поглощения от интенсивности света (см. 157), нелинейный или многофотонный фотоэффект (см. 179), многофотонное возбуждение и диссоциация молекул (см. 189), эффект Керра, обусловленный электрическим полем света (см. 152) сведения о других будут изложены в 224 и в гл. ХК1. Совокупность нелинейных явлений составляет содержание нелинейной оптики и нелинейной спектроскопии, которые сформировались в 60-е годы и продолжают быстро развиваться.  [c.770]

Напомним, что причину нелинейных явлений Вавилов усматривал в изменении числа молекул или атомов, способных погло-ш,ать свет, т. е. изменений, обусловленных переходом атомов и молекул в возбужденное состояние и конечной длительностью пребывания в этих состояниях. Помимо указанной, к нелинейным явлениям приводит и ряд других причин часть из них будет рас-с.мотрена ниже. В соответствии с этим и совокупность нелинейных явлений, обнаруженных при исследовании распространения лазерного излучения, оказалась еще более многообразной. Некоторые из них — вынужденное рассеяние Ман,дельштама — Бриллюэна, многофотонное поглощение и ионизация (см. 157), нелинейный фотоэффект ( 179) — описаны выше. В данной главе рассмотрены явления, сводящиеся, в общих чертах, к изменению направления распространения и спектрального состава излучения.  [c.820]

Возвратимся к выражению (21.11), дающему зависимость показателя преломления от частоты при затухании колебаний осциллирующего электрона. В данном случае рассмотрим дисперсию в непосредственной близости от линии поглощения вещества, т. е. будем считать, что частота вынужденных колебаний со мало отличается от частоты собственных колебаний атома соо.  [c.96]

Кроме спонтанного испускания и поглощения Эйнштейн ввел представление о вынужденном (индуцированном или стимулированном) испускании. Под действием внешнего электромагнитного поля атомы, находящиеся в возбужденном состоянии (например, на уровне 2), могут согласно Эйнштейну либо поглощать энергию, переходя на более высокий уровень, либо, наоборот, отдавать энергию к = Ё2— ь возвращаясь на более низкий уровень энергии. Такие переходы являются вынужденными и обусловливают вынужденное испускание. Вероятность этих переходов в единицу времени есть 2lWv Величина Б21 называется коэффициентом Эйнштейна для вынужденного испускания. Если внешнее поле отсутствует (и = 0), то вынужденные переходы не происходят. Таким образом, внешнее электромагнитное поле вызывает переходы, сопровождающиеся как поглощением, так и испусканием энергии. Следует отметить, что существование вынужденного испускания не противоречит и классической теории. Согласно законам электродинамики электромагнитная волна, падающая на колеблющийся диполь, в зависимости от соотношения фаз их колебаний может усиливать или тормозить колебания диполя. Иными словами, излучение, падающее на атом, может заставлять последний не только поглощать, но и испускать соответствующие кванты энергии.  [c.143]


Вынужденное испускание. Гипотеза Эйнштейна относительно вынужденного испускания состоит в том, что под действием электромагнитного поля частоты V молекула может, во-первых, перейти с более низкого энергетического уровня Е1 на более высокий 2 с поглощением кванта энергии кх = Е2— 1 (рис. 35.1,6) и, во-вторых, перейти с более высокого уровня 2 на более низкий 1 с испусканием кванта энергии Ау = 2— ( (рис. 35.1, в). Первый процесс принято называть поглощением, второй — вынужденным (индуцированным или стимулированным) испусканием. Скорость каждого из этих процессов пропорциональна соответствующим вероятностям 12 и 21 , где 12 и 21 — коэффициенты Эйнштейна для поглощения и вынужденного испускания и — спектральная плотность излучения. Согласно принципу детального равновесия при термодинамическом равновесии число квантов света йп, поглощенных за время (11 при переходах / —>- 2, должно равняться числу квантов с1п2, испущенных в процессе обратных переходов 2- 1. Число поглощенных квантов согласно Эйнштейну пропорционально спектральной плотности радиации и и числу частиц П на нижнем уровне  [c.269]


Смотреть страницы где упоминается термин Поглощение вынужденное : [c.25]    [c.527]    [c.321]    [c.340]    [c.428]    [c.430]    [c.737]    [c.777]    [c.268]    [c.268]   
Введение в нелинейную оптику Часть2 Квантофизическое рассмотрение (1979) -- [ c.277 , c.286 ]



ПОИСК



Вероятности поглощения и вынужденного излучения

Вынужденное излучение связь с коэффициентом поглощения

Л <иер поглощение и вынужденное излучение

Поглощение

Прямоугольное помещение, приближённое решение. Коэффициент поглощения поверхности и полное поглощение. Время реверберации для косых, тангенциальных и аксиальных волн. Кривая затухания звука в прямоугольном помещении. Цилиндрическое помещение Приближение второго порядка. Эффект рассеяния от поглощающих зон Вынужденные колебания

Сечение вынужденного излучения дифференциальною поглощени

Соотношения между поглощением, вынужденным и спонтанным излучением

Спонтанное и вынужденное излучение поглощение



© 2025 Mash-xxl.info Реклама на сайте