Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифракция в поляризация

Свойства электромагнитных излучений. Электромагнитные излучения с различными длинами волн имеют довольно много различий, но все они, от радиоволн и до гамма-излучения, одной физической природы. Все виды электромагнитного излучения в большей или меньшей степени проявляют свойства интерференции, дифракции и поляризации, характерные для волн. Вместе с тем все виды электромагнитного излучения в большей или меньшей мере обнаруживают квантовые свойства.  [c.278]


Выполненные в начале XIX в. впечатляющие исследования по интерференции, дифракции и поляризации света сделали волновую концепцию в оптике практически безраздельно господствующей. Однако при этом возникали серьезные сомнения по поводу свойств той среды, в которой распространяются световые волны,— свойств упругого эфира.  [c.28]

Широкое использование их для практических целей одновременно ставило задачи и перед другими разделами радиоэлектроники. Прежде всего, например, возникали вопросы, относящиеся к исследованию своеобразных колебательных систем, используемых в этой области техники. Подлежали глубокому рассмотрению вопросы внутренней электродинамики полых резонаторов и направляющих устройств. Ставились и разрешались вопросы внешней электродинамики, главным образом в связи с развитием радиолокации. Надо было теоретически и практически изучить излучение и прием радиоволн новых диапазонов. По-другому пришлось подойти к расчету и конструированию антенных устройств. Предстояло разобраться в явлениях отражения ультракоротких волн от различных целей , начиная от простых геометрических фигур и кончая сложными телами, какими на практике могли быть корабли, самолеты, ракеты, спутники Земли и другие объекты. Очень большое внимание надо было уделить вопросам распространения волн (влияния подстилающей поверхности, дифракции, рефракции, поляризации и др.). Были подвергнуты изучению явления поглощения и рассеяния ультракоротких волн естественными и искусственными образованиями в атмосфере, в газах, аэрозолях, при наличии метеорологических неоднородностей в атмосфере, отражения от метеорных следов и т. п. Находились в центре внимания также и задачи, связанные с отысканием способов уменьшения или полного устранения отражений этих волн и многое другое. Наконец, нужно было разработать совершенно новые методы измерений и создать для этого измерительную технику.  [c.381]

Строго говоря, детальный анализ принципов голографии возможен только на основе общей электромагнитной теории процессов рассеяния, дифракции и поляризации. Однако для большинства задач, рассматриваемых в данной главе, достаточна приближенная теория, используемая в физической оптике. Необходимо, однако, помнить об ограничениях этой теории, указанных в разд. 2 гл. 2, а также в работе [12].  [c.123]

Различные явления физической оптики могут быть рассмотрены как с позиций волновых, так и с позиций квантовых представлений. В настояш,ем учебном пособии явления интерференции, дифракции и поляризации рассматриваются с точки зрения их волновой природы с использованием в ряде случаев электромагнитной теории света.  [c.3]


Известно, что приборы, построенные на принципах интерференции, дисперсии, дифракции и поляризации, широко применяются в самых разнообразных областях физического и технического экспе-. римента. Это обстоятельство нашло отражение в настояш,ей книге. Интерферометры различных типов применяются для весьма тонких метрологических измерений, для изучения оптических неоднородностей прозрачных объектов и воздушных потоков, для исследования температурных полей, для измерения микро- и макрорельефов поверхностей и т. д.  [c.3]

В анизотропной среде брэгговская дифракция может происходить как с изменением поляризации у дифрагированного света, так и без него. В последнем случае картина дифракции аналогична картине брэгговской дифракции в изотропной среде. При дифракции с изменением поляризации брэгговский угол определяется не только соотношением длин волн света и звука, но и оптич. св-вами среды. Про дифрагировавший свет выходит из звук, пучка под углом не равным брэгговскому. Дифракция света с данной длиной волны возможна на звук, волнах, частоты к-рых ограничены не только сверху, но и  [c.174]

Распределение энергия в спектре излучения нагретых твердых тел. Изучение явлений дифракции, интерференции и поляризации света привело к утверждению электромагнитной волновой теории света.  [c.298]

В предшествующих главах были подробно обсуждены многообразные свойства света, указывающие на волновую природу его (интерференция, дифракция) и позволяющие установить поперечный характер световых волн (поляризация). Попутно не раз отмечалось, что световые волны представляют собой электромагнитные волны. В дальнейшем мы встретим многочисленные и разнообразные доказательства электромагнитной природы световых волн.  [c.400]

В книге впервые изложены теоретические и практические аспекты дифракции, рефракции и поляризации. Проанализирован системный подход распознавания образа дефектов на основании применения различных физических свойств акустического поля. Всесторонне рассмотрено влияние анизотропии свойств на параметры ультразвукового контроля.  [c.3]

Лит. Горелик Г. С., Колебания и волны, 2 изд., М., 19 9 Бреховсквх Л, М., Волны в слоистых средах, 2 илд., М., 1973, гл, 6 Ч е р н о в Л. А., Волны в случайно-неоднородных средах, М., 1975, ч. 1. М. А. Исакович. ГЕОМЕТРИЧЕСКАЯ ОПТИКА раздел оптики, в к-ром изучаются законы распространения света в прозрачных средах и условия получения изображений на основании матем, модели физ. явлений, происходящих в оптич. системах, справедливой, когда длина волны света бесконечно мала. Положения Г. о, имеют значения первых приближений, согласующихся с наблюдаемыми явлениями, если эффекты, вызываемые волновой природой света, — интерференция, дифракция и поляризация — несущественны. Выводы Г, о. строятся дедуктивным методом на основании неск. простых законов, установленных опытным путём  [c.438]

В оптич. диапазоне отчётливо проявляются одновременно И волновые, и корпускулярные свойства эл.-магн. излучения. Волновые свойства О. и. позволяют дать объяснения явлениям его дифракции, интерференции, поляризации. В то же время процессы фотоэлектронной эмиссии, теплового излучения невозможно понять, не привлекая представления об О, и. как о потоке частиц — фотоное. Эта двойственность природы О. и. находит общее объяснение в квантовой механике (см. Корпускулярно-волновой дуализм).  [c.459]

Харрис с сотр. [14, 15] предложили спектральный фильтр с электронной настройкой на основе коллинеарного акустооптического взаимодействия в оптически анизотропных средах и продемонстрировали его работу. В разд. 9.5.2 мы кратко рассмотрели одну из конфигураций взаимодействия с участием сдвиговой волны. В другом эксперименте, выполненном этими авторами, оптические волны и продольная акустическая волна распространялись вдоль оси X кристалла LiNbOj. На рис. 10.12, а показано схематически устройство этого фильтра. Падающий пучок может быть поляризован либо вдоль оси у, либо вдоль оси Z. Благодаря фотоупругому эффекту с постоянной /7,4 (= (см. задачу 10.4) возникает брэгговская дифракция в ортогональную поляризацию. Перестройка по спектру от длины волны 7000 до 5500 А была получена изменением акустической частоты от 750 до 1050 МГц (см. рис. 10.12, б). Для кристалла LiNbOj длиной 1,8 см с указанной на рис. 10.12, а ориентацией двулучепреломление равно Ап = 0,09. Из (10.3.9) следует, что ширина полосы пропускания АХ,/2 на длине волны X = 6250 А составляет около 2 А. Необходимо заметить, что в спектре пропускания не присутствуют вторичные полосы или полосы высших порядков, поскольку акустическая волна является синусоидальной. Интенсивность звука 1 , необходимая для 100%-ного преобразования мощности (т. е. для того, чтобы ,2 - = 7г/2), так же, как и в (10.1.9), определяется выражением (см. задачу 10.4)  [c.423]


Стандартная геометрия записи-считывания пропускающей голограммы [10.28] — ось с в плоскости падения записывающие-пучки произвольной одинаковой поляризации (обыкновенные или необыкновенные) считывающий и восстановленный — необыкновенной поляризации. Голограммы во встречных пучках в LiNbOg записывались в [10.34, 10.35]. Наблюдается весьма эффективная анизотропная (межмодовая) дифракция [10.36—10.39]. Поляризационноориентационные зависимости различных типов дифракции в LiNbOg.. изучены в [10.40—10.42].  [c.275]

Однако неправильно и такое, иногда высказываемое предположение, что скалярное приближение теории дифракции всегда дает хотя бы качественное описание процессов оптической дифракции. Например, согласно электромагнитной теории [3], решетка, показанная на рис. 1,а, будет вести себя как совершенное зеркало, отражающее только волну, распространяющуюся в направлении, противоположном вектору к, и не образующую классической дифракции в каких-либо других боковых порядках независимо от ширины ступеньки, параллельной вектору Е. Это неожиданное для классической теории, но легко получаемое из электромагнитной теории предсказание, сделанное Мареша--лем и Строуком [3] в 1959 г., подтверждается экспериментами с излучением на длине волны 3 сл и с поляризацией, параллельной вектору Е (рис. 1,6).  [c.18]

Убедительное подтверждение волновая теория света получила в начале XIX в., когда на ее основе было дано исчерпывающее объяснение явлениям интерференции и дифракции. Открытие поляризации света свидетельствовало о поперечности световых волн. В рамках механической волновой теории, рассматривавшей свет по аналогии со звуковыми волнами, эфир пришлось наделить механическими свойствами твердого тела, так как поперечные упругие волны могут распростряняться только в твердых телах. Конечно, это была странная среда заполняя все пространство и пронизывая все тела, она при этом никак не влияла на их движение.  [c.392]

Богатая цветовая гамма растительного и животного мира волшебные краски неба, радуги, восхода и захода солнца, эффекты тени, смены дня и ночи, притягательная сила огня и раскаленного металла, кшогоцветие орнаментов национальных одежд, посуды, витражей... Можно долго перечислять примеры нашего повседневного соприкосновения с миром оптических явлений, которое начинается с раннего детства. Это и неудивительно, так как зрение человека основано на закономерностях взаимодействия света с веществом. Оптические свойства твердых тел являются предметом пристального научного и технологического интереса на протяжении последних трех-четьфех столетий, хотя эти свойства широко использовались для решения определенных декоративных задач еще со времен ранних цивилизаций уже древние художники, создатели наскальных изображений, находили эффектные цветовые решения путем смешивания различных природных пигментов. Начиная с открытия Снеллиусом в 1621 г. закона преломления света оптическая спектроскопия прошла полный драматизма и внутренних противоречий путь развития. За исследованиями явлений отражения и преломления света последовал этап повышенного внимания к интерференции, дифракции и поляризации света, а затем пришло время для целенаправленного изучения поглощения, флюоресценции (люминесценции), рассеяния света и нелинейных оптических эффектов. Длительное соперничество между корпускулярной и волновой теориями света увенчалось компромиссом, основанным на кохщепции дуализма, и открытием законов квантовой механики и квантовой электродинамики. Создание лазерных источников и совершенствование методов детектирования электромагнитного излучения превратили спектроскопию в мощный метод исследования физических свойств твердого тела и протекающих в нем элементарных процессов. Более того, вряд ли можно представить сегодня наши познания о микромире без средств, которые обеспечиваются спектроскопией видимого, инфракрасного.  [c.3]

Как правило, в акустооптич. фильтрах используется анизотропная дифракция в двулучепреломляюш их кристаллах (рис. 3). Разделение про-ходяш его и дифрагированного света осуществляется системой поляризаторов. На акустооптич. ячейку 1 падает плоскополяризованный свет, степень поляризации к-рого контролируется поляризатором 2. При прохождении света через ячейку в узком спектральном интервале возникает оптич. излучение другой поляризации. Наличие его определяется анализатором 3. Монохроматич. звук создаётся с помощью электроакустич. преобразователя 4. Эффективность фильтра увеличивается с ростом длины взаимодействия, поэтому  [c.36]

НЕЙТРОННАЯ ОПТИКА, раздел нейтронной физики, в рамках к-рого изучается вз-ствие медленных нейтронов со средой и с эл.-магн. и гравитац. полями. В условиях, когда длина волны де Бройля нейтрона Х=Штр т — масса нейтрона, V — его скорость) сравнима с межат. расстояниями или больше их, существует нек-рая аналогия между распространением в среде фотонов и нейтронов. В Н. о., так же как и в световой оптике, есть неск. типов явлений, описы ваемых либо в лучевом приближении (преломление и отражение нейтронных пучков на границе двух сред), либо в волновом (дифракция в периодич. структурах и на отд. неоднородностях). Комбинационному рассеянию света соответствует неупругое рассеяние нейтронов круговой поляризации света можно сопоставить (в первом приближении) поляризацию нейтронов. Аналогию между нейтронами и фотонами усиливает отсутствие у них электрич. заряда. Однако в отличие от квантов эл.-магн. поля не троны, двигаясь в среде, в осн. взаимодействуют с ат. ядрами, обладают магн. моментом и массой покоя, вследствие чего скорость распространения тепловых нейтронов в 10 —10 раз меньше, чем для фотонов той же длины волны.  [c.453]

Дифракция света происходит на частицах, размеры которых одного порядка с длиной волны падающего на них света. Угловое распределение интенсивности и степень поляризации рассеянного света являются функциями размера частицы, показателя прелом-.гения частицы (из нрозрачного вещества) и длины волны падающего света [3941. Для измерения углового распреде.ления и поляризации рассеянного света существует специальное оборудование [293]. Сущность дифракционного метода описана в гл. 5.  [c.28]


Согласно второй точке зрения, металлы, пассивные по определению 1, покрыты хемосорбционной пленкой, например, кислородной. Такой слой вытесняет адсорбированные молекулы HjO и уменьшает скорость анодного растворения, затрудняя гидратацию ионов металла. Другими словами-, адсорбированный кислород снижает плотность тока обмена (повышает анодное перенапряжение), соответствующую суммарной реакции М -f гё. Даже доли монослоя на поверхности обладают пассивирующим действием [16, 17]. Отсюда следует предположение, что на начальных этапах пассивации пленка не является диффузионно-барьерным слоем. Эту вторую точку зрения называют адсорбционной теорией пассивности. Вне всякого сомнения, образованием диффузионно-барьерной пленки объясняется пассивность многих металлов, пассивных по определению 2. Визуально наблюдаемая пленка сульфата свинца на свинце, погруженном в H2SO4, или пленка фторида железа на стали в растворе HF являются примерами защитных пленок, эффективно изолирующих металл от среды. Но на металлах, подчиняющихся определению 1, основанному на анодной поляризации, пленки обычно невидимы, а иногда настолько тонки (например, на хроме или нержавеющей стали), что не обнаруживаются методом дифракции быстрых электронов . Природа пассивности металлов и сплавов этой группы служит предметом споров и дискуссий вот уже 125 лет. Представление, что причиной пассивности всегда является пленка продуктов реакции, основано на результатах опытов по отделению и исследованию тонких оксидных пленок с пассивного железа путем его обработки в водном растворе KI + I2 или в ме-танольных растворах иода [18, 19]. Анализ электроно рамм пле-  [c.80]

Эллипсомегрия Поверхность образца освещают плоскополяризован-ным светом. Параметры эллиптической поляризации отраженного света зависят от толщины поверхностного слоя. Метод применим и к образцам, находящимся в жидкости Дифракция Монохроматический рентгеновский луч проходит рентгеновских через образец. Образующаяся дифракционная  [c.151]

Фазовые скорости s- и р-поляризованных по отношению к плоскости падения волн различны. Поэтому в общем случае пеноляризов. излучения Д. н. состоит нз четырёх листов — по два д.яя каждой поляризации, а в кристалле распространяются восемь волн по четыре в прямом и дифракционном направлениях. Интер-ференц. в )аимодействие этих волн между собой обусловливает особенности дииамич. дифракции. Вообще, если в кристалле одновременно распространяется гг лучей, то Д. п, имеет 2п листов, и всего в кристалле возникает 2ri волн.  [c.641]

Физическая О. рассматривает проблемы, связанные с процессами испускания света, природой света и световых явлений. Утверждение, что свет есть поперечные ал.-маги, волны, явилось результатом огромного числа эксперим. исследований дифракции света, интерференции света, поляризации света, распространения света в анизотропных средах (см. Кристаллооптика, Оптическая анизотропия]. Совокупность явлений, в к-рых проявляется волновая природа света, изучается в крупном разделе фиа. О.— волновой оптике. Её матем. основанием служат общие ур-ния класснч. электродинамики — Максвелла уравнения. Свойства среды при этом характеризуются макроскодич. материальными константами — значениями диэлектрической проницаемости 8 и магнитной проницаемости р,, входящими в ур-ния Максвелла в виде коэффициентов. Эти значения однозначно определяют показатель преломления среды л = [Лер.  [c.419]

Если я, то, согласно (11) и (12), полное отражение возможно лишь для одного спинового компонента — отражённый пучок будет поляризован параллельно направлению намагничиванпя зеркала. Как и в случае дифракции, метод полного отражения позволяет получить высокую степень поляризации пучка нейтронов.  [c.71]


Смотреть страницы где упоминается термин Дифракция в поляризация : [c.48]    [c.511]    [c.274]    [c.91]    [c.251]    [c.409]    [c.48]    [c.69]    [c.6]    [c.263]    [c.91]    [c.229]    [c.46]    [c.89]    [c.305]    [c.564]    [c.648]    [c.660]    [c.670]    [c.677]    [c.679]    [c.165]    [c.392]    [c.421]    [c.57]    [c.57]   
Физика дифракции (1979) -- [ c.184 ]



ПОИСК



Вторичная дифракция на ленте (Я-поляризация)

Дифракция

Дифракция на клипе Я-поляризация

Дифракция плоской волны на периодической структуре из импедансных полуплоскостей. Магнитная поляризация

Дифракция рентгеновских лучей поляризация

Поляризация

Сохранение поляризации и деполяризация при дифракции на произвольном цилиндре



© 2025 Mash-xxl.info Реклама на сайте