Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Железо хромистых сталях

Чернова и Томашов [13], изучавшие анодное растворение железа, хромистых сталей (25% Сг), легированных никелем или молибденом (0,5%), показали, что в этом случае наблюдается логарифмическая зависимость скорости растворения от потенциала с коэффициентом Ь" = = 0,05 0,10. Иофа и Вэй Бао Мин [14] при исследовании процесса растворения кобальта в серной кислоте установили, что Ь = 0,10- 0,18, а Ь" =0,026- 0,042.  [c.29]


Повышение жаростойкости железо-хромистых сталей при легировании иттрием наблюдается также и при испытаниях в углекислом газе [118]. Константа скорости окисления для сплава Ре —25% Сг при 1000° С равна  [c.83]

Кинетика окисления железо-хромистых сталей на воздухе [119, 120]  [c.85]

По теории, предполагающей образование на поверхности сплава защитного окисла легирующего компонента [124—126], также нельзя объяснить повышение жаростойкости железо-хромистых сталей, легированных иттрием, так как иттрий имеет слишком большой ионный радиус по сравнению с железом и хромом.  [c.90]

Никель — дефицитный и дорогой легирующий элемент и поэтому в тех случаях, когда условия работы конструкции позволяют, используют стали с пониженным его содержанием или без-никелевые хромистые стали. В сплавах на железоникелевой основе содержание никеля еще выше, чем в хромоникелевых сталях. В никелевых сплавах никель служит основой, а железо — легирующей присадкой. Эти сплавы благодаря своим свойствам находят применение в ответственных конструкциях, работающих в сложных и специфических условиях.  [c.279]

В некоторых случаях наличие примесей в сплаве, в частности углерода в хромистых сталях, склонного к образованию карбидов хрома и железа, вызывает необходимость увеличения содержания легирующего элемента па то количество, которое расходуется на образование этих карбидов, с таким расчетом, чтобы содержание хрома в  [c.128]

По мнению некоторых исследователей, для сернокислые растворов такое явление, связанное с образованием сульфатов растворяющихся металлов, наблюдается не только при растворении железа [7,671, но и при растворении никеля [ 68,691. На хроме солевые защитные слои при потенциалах вблизи не образуются [ 8]. В полном согласии с этими результатами для хромистых сталей появление предельных токов рассматриваемой природы характерно только при содержании хрома в сплаве ниже некоторой критической концентрации, для которой в литературе приводятся значения 6,7% [ 70 1, 10% [711 и 13%  [c.15]

Электрохимическое поведение пассивных сплавов железа с хромом и никелем коррелирует с поведением составляющих их металлов. Так, для хромистых сталей установлено снижение количества электричества, необходимого для пассивации, с ростом содержания в них хрома до некоторой критической величины (12-14%) [70,114], Аналогичные результаты были получены для сплавов железо-никель, критическое содержание никеля в которых соответствует 30% [114]. Эти результаты согласуются с заключением о более тонких пассивирующих слоях на хроме и никеле по сравнению с железом.  [c.26]


Показано, например [ 66,99 ], что растворение пассивных хромистых сталей в серной кислоте происходит с преимущественным переходом в раствор железа, благодаря чему имеет место обогащение поверхностной пленки хромом. По данным [99] в результате такого обогащения на поверхности сплава может образоваться слой, коррозионная стойкость которого может на 3-4 порядка превосходить стойкость поверхностного слоя исходного состава. На возможность обогащения хромом поверхности пассивных нержавеющих сталей указывается также в работах [117, 119].  [c.27]

Аналогично железу, хрому и никелю пассивируются высоколегированные хромистые и хромоникелевые стали. На рис. 8 приведены типичные поляризационные кривые хромистой стали. Определяющим элементом является хром стали с содержанием хрома менее 10 % по своим свойствам ближе к железу, тогда как стали с содержанием 15 "/о и более ближе к хрому.  [c.33]

Малоуглеродистые и углеродистые стали и железо обладают достаточной окали-ностойкостью в условиях атмосферы до 450—500° С. Нагрев при более высоких температурах вызывает усиленное окисление. Введение Сг повышает окалиностойкость, причем пропорционально увеличению его содержания (см. рис. 23) его влияние становится заметным при введении около 5% 5% -ные хромистые стали обладают хорошим сопротивлением окислению при температурах около 600—650° С.  [c.220]

Железохромистые сплавы обладают более высоким сопротивлением коррозии в продуктах сгорания топлива, содержащего серу, чем хромоникелевые стали. Хорошие результаты хромистые стали показали и в ряде других сред, в частности, в условиях одновременного воздействия газовой и жидкой фаз при крекинге нефти и ее перегонке в атмосфере водяного пара. Сопротивление газовой коррозии сплавов железа с хромом можно повысить путем присадки к ним А1, Si и N1.  [c.220]

Мягкое железо, железоуглеродистые стали, а также низколегированные стали при температурах ниже —(20- -45° С) становятся очень хрупкими вследствие резкого падения ударной вязкости (хладноломкости). Для хромистых нержавеющи.к сталей с повышением содержания хрома порог хладноломкости смещается в сторону пониженных температур (ниже О" С).  [c.231]

В расплавленном-висмуте чистое железо и углеродистые стали стойки до температуры 700° С. Хромистая сталь, легированная до 27% хрома, хромо-никелевые аустенитные стали и ниобий стойки до 500° С. Молибден, тантал, бериллий и графит устойчивы в висмуте до температуры 1000° С, хром — до 750° С. Алюминий и цирконий подвергаются интенсивному разрушению при температурах свыше 300° С. Медь, никель, марганец, свинец и торий не стойки в висмуте [1,63]. С увеличением температуры, растворимость металлов в висмуте возрастает. В интервале температур 271—800° С наиболее растворимы в висмуте цирконий, хром и железо.  [c.51]

Кремний и алюминий вводят обычно совместно или раздельно для повышения окалиностойкости хромистых сталей. На поверхности детали образуется очень прочная пленка сложного оксида железа, хрома, кремния и алюминия, отличающаяся хорошими защитными свойствами.  [c.103]

Применение лития, несмотря на его положительные свойства, ограничено трудностями выбора конструкционных материалов, работающих в контакте с расплавленным литием. В расплавленном литии имеют сравнительно низкую коррозионную стойкость хромоникелевые стали, а хромистые стали и чистое железо — удовлетворительную.  [c.5]

В ВОДНЫХ растворах карбамида углеродистая сталь подвергается коррозионному разрушению (табл. 7.14). Скорость коррозии углеродистой стали в растворах карбамида концентраций 1—92% в интервале температур 30—115°С может составить 0,15— 0,68 мм/год. При испытаниях образцов углеродистой стали отмечается интенсивное окрашивание раствора в бурый цвет, что свидетельствует о загрязнении его солями железа. Хромистая сталь Х5М также подвергается коррозии в растворах карбамида. Достаточную коррозионную стойкость в растворах карбамида различной концентрации (до 92%) при температурах до 115°С, включая условия концентрирования карбамида, имеют стали 0X13, Х18Н10Т, Х21Н5Т. В растворах концентрации до 60% и температурах до 70 °С кроме указанных сталей стойка и хромистая сталь Х8.  [c.250]


Таблица 32 Значения коэффициента изменения жаростойкости у для железо-хромистых сталей при различных темтературах (на воздухе) [119, 120] Таблица 32 <a href="/info/516256">Значения коэффициента</a> изменения жаростойкости у для железо-хромистых сталей при различных темтературах (на воздухе) [119, 120]
Из полученных данных также следует, что наличие нттрия в железо-хромистых сталях существенно изменяет механизм процесса окисления. Если при окислении железа и стали Х5 процесс контролируется диффузионной стадией п 2), то при введении в них добавок иттрия лимитирующей стадией процесса становится кинетическая пх ).  [c.87]

Известно, что иттрий склонен к образованию сложных окислов типа шпинелей с окислами различных металлов, в том числе с окислами хрома, молибдена и циркония. Резкое уменьшение скорости окисления сплавов при появлении в окалине окислов хрома авторы работы [119] связывают именно с образованием таких сложных окислов хрома и нттрия типа шпинелей. Из вышеизложенного следует, что иттрий повышает жаростойкость железо-хромистых сталей и сплавов на основе хрома, окисная пленка которых состоит из окисла хрома СггОз или двойных окислов типа шпинелей.  [c.93]

Рис. 296. Зависимость потери массы хромистых сталей от времени в расплаве Na l при 870 С J — железо-армко 2 — сталь У9 3 — сталь 20Х 4 — сталь 20X3 5 - сталь 2X13 6-сталь СХ8 7 — сталь X17 Рис. 296. Зависимость <a href="/info/251112">потери массы</a> <a href="/info/36274">хромистых сталей</a> от времени в расплаве Na l при 870 С J — <a href="/info/33513">железо-армко</a> 2 — сталь У9 3 — сталь 20Х 4 — сталь 20X3 5 - сталь 2X13 6-сталь СХ8 7 — сталь X17
В виде примера вычислим состав коррознонностойкой хромистой стали, содержащей / атомной доли хрома в твердом растворе. Атомный вес железа равен 55,85, хрома — 52,01, н = 1  [c.127]

При решении вопроса о допустимости контакта между металлами можно также руководствоваться следующими данными. Все металлы разделены на пять групп первая группа магний вторая — п,ипк, алюминий, кадмий третья — железо, углеродистые стали, свинец, олово четвертая — никель, хром, хромистые стали (Х17), хромопикелевые стали (Х18Н9) пятая — медноникелевые сплавы, медь, серебро.  [c.182]

Железо и никель, обладая взаимрюй растворимостью, дают непрерывный ряд твердых растворов. Никель способствует образованию сплавов с неограниченной у-областью. Железоникелевые сплавы устойчивы в растворах серной кислоты, щелочей и ряда органических кислот. Однако железоникелевые сплавы не нащли широкого применения в качестве конструкционных материалов в химическом машиностроении, так как они не имеют особых преимуществ по сравнению с хромистыми сталями.  [c.218]

Введение в сплавы на основе железа,кроме хрома, еще и никеля в количестве 10 % и более переводит структуру сталей из феррит-ной (присущей хромистым сталям) в более галогенную (а значит-и более коррозионноустойчивую) аустенитную. Никель придает сплаву также более высокие пластические свойства при сохранении прочностных характеристик и повышает пассивирующую способность в депассивирующих средах едких щелочей, расплавах солей и др.  [c.93]

Введение в твердый раствор никеля придает хромистым сталям более высокую химическую стойкость как за счет образования пассивной пленки оксида никеля, так и за счет перевода стали в более гомогенную (и, следовательно, в более коррозионностойкую) аустенитную структуру. Наряду с повышением коррозионвой стойкости никель способстаует повышению пластичности, ударной вязкости, жаростойкости, а при использовании его в качестве основы вместо железа - и жаропрочности сплавов. В качестве аустенитообразующих элементов используют также азот, марганец, медь и кобальт.  [c.14]

Травитель 32 30 мл H2SO4 2—3 г СгОз 70 мл Н2О]. Смесь серная кислота — хромовая кислота рекомендуется Робином [21 ], а также Портевином и Ваштином [22] для хромистых сталей и сплавов железо—хром и железо—никель. Применяют кипящий раствор. К недостаткам следует отнести возможность наступления пассивации.  [c.116]

При добавке углерода к железохромовым сплавам образуются стабильные карбиды. В соответствии с современными взглядами, встречаются три типа хромовых карбидов кубический карбид на основе хрома (Сг, Ре)азСе, тригональный карбид на основе хрома (Сг, Ре),Сз и орторомбический карбид хрома СгдСа (при очень высоком содержании углерода). Вследствие сродства железа и хрома эти карбиды являются или карбидами хрома, в которых хром частично замещен железом, или карбидом железа, в котором атомы хрома располагаются на месте атомов железа. В карбиде железа может быть до 15% Fe, в кубическом карбиде хрома до 25% Сг, в тригональном — до 55% Сг. В орторомбическом карбиде хрома лишь незначительное количество железа занимает позиции хрома. Карбид железа с частью хрома вместо железа ( хромистый цементит ) встречается только в низколегированных хромистых сталях. Б них преобладает собственно карбид железа, который определяет ход травления. В высоколегированных хромистых сталях на травление влияют плохо растворимые карбиды хрома.  [c.130]

А. Ф. Маскаева, С. Ю. Гуревича i[l—3] показали, что ультразвуковые волны в инварных сплавах, техническом железе, хромистых и углеродистых сталях возбуждаются за счет магнитострикционных сил. Особенно эффективно возбуждение ультразвуковых волн за счет магнитострикционных сил происходит при повышенных температурах. Таким образом, для выяснения закономерностей возбуждения ультразвуковых волн в ферромагнетиках наряду с амперовыми силами необходимо учитывать магнитострикционные силы. К сожалению, до сих пор не существует корректного аналитического выражения для объемной плотности магнитострикционных сил в ферромагнетиках. При анализе магнитострикционных явлений в ферромагнитных поликристаллах обычно пользуются выражением для объемной плотности магнитострикционных сил в парамагнетиках, которое было впервые получено Таммом [4]  [c.246]


Самой высокой коррозионной устойчивостью в расплавленном свинце обладают тантал и ниобий. Железо, углеродистая сталь, хромистые и хромоникелевые стали имеют хорошую устойчивость до 500—600°С. При более высоких температурах она понижается, так как наблюдается растворение преимущественно по границам зерен. Стали перлитного типа устойчивы к действию свинца при температурах до 600°С. Хромистые нержавеющие стали ферритного и мартенсигного типов (1X13, Х17) обладают высокой коррозионной устойчивостью до 540°С.  [c.90]

Коррозионные свойства хромистых сталей во многом зависят от содержания в них углерода. При увеличении содержания углерода до 0,3-0,4 % в сталях с 13-15%-ным содержанием хрома наблюдается резкое понижение коррозионных свойств. Следует иметь в виду, что высокохромистые стапи после закалки имеют более высокую коррозионную устойчивость, чем в отожженном состоянии. Никель сам по себе легко активируется ионами хлора, однако введение его в сплав железо-хром резко повышает сопротивление сплава активирующему действию хлоридов благодаря приданию стали аустенитной структуры, обладающей повышенной стойкостью в растворах хлоридов, т.е< стойкостью к точечной коррозии. Наиболее устойчиво сохраняется в растворах хлоридов пассивное состояние стали с полностью аустенитной структурой. Молибден и кремний препятствуют активированию нержавеющих сталей ионами хлора.  [c.72]

При невозможности избежать появления новой составляющей необходимо стремиться к тому, чтобы ее потенциал, а следовательно, и свойства в коррозионном отношении были бы возможно ближе к свойствам основного твердого раствора. Этому требованию удовлетворяют железохромистые сплавы, струюура которых представляет собой твердый раствор хрома в железе (хромистый феррит или а-раствор) и карбиды хрома, а также хромоникелевые стали аустенитного класса с карбидами титана и др.  [c.60]

Низколегированные никелевые, хромистые и молибденовые стали труднее отличить одну от другой, чем углеродистые, однако от углеродистых сталей они отличаются сильно. Нержавеющие хромистые стали хорошо различаются в зависимости от содержания хрома. С повышением содержания хрома трибоэффект увеличивается с положительным знаком по отношению к чистому железу.  [c.361]

Стойкость против коррозии аустенитной хромоникелевой стали выше, чем стойкость хромистой стали. Сталь хорошо сопротивляется действию холодной фо.сфорной и других слабых неорганических кислот, растворов многих солей и щелочей, органических кислот, влажного воздуха, морской воды, пара и т. д. Сталь плохо сопротивляется действию соляной, серной, плавиковой кислот, хлора, брома, иода, хлорного железа, горячей фосфорной кислоты при концентрации более 50—6(P/q, кипящей муравьиной, щавелевой и технической хромовой кислот, хлорной меди, четырёх- и двухлористого олова и расплавленных едкого кали и соды.  [c.489]

Чистое железо стойко в натрии с малым содержанием кислорода до температуры 590° С [1,49]. При температуре 500° С и концентрации кислорода 0,014% скорость коррозии углеродистой стали составляет 0,1 мг1см мес. Сталь Х5М корродирует в этих условиях с меньшей скоростью. С ростом концентрации кислорода до 0,1 и 0,5% скорость коррозии этих сталей возрастает до 1,800 мг/см мес и 5,800 мг/см мес соответственно. Дальнейшее увеличение содержания хрома в стали до 13% существенно не изменяет ее коррозионной стойкости в этих условиях. При температуре 715° С й концентрации кислорода 0,01 % скорость коррозии составляет , мг1сзл мсс [1,47]. При температуре свыше 540° С возможно охрупчивание ферритных сталей однако, исходя из условий коррозионной стойкости, при этих температурах аустенитные нержавеющие стали можно заменить хромистыми сталями с содержанием 12—25% хрома. Количество кислорода в натрии при этом должно быть снижено [1,49].  [c.48]

Марганцевая сталь Гадфильда взята нами для опытов с целью выяснить поведение устойчивого твердого раствора железа, углерода и марганца под влиянием наклепа, считая зто поведение типичным для менее устойчивых твердых растворов аустенитного класса. Хромистая сталь взята как типичная для карбидных сталей.  [c.241]

Для хромоникелевых сталей с содержание.м хрома до 20% достаточно 8-10% Ni, для перевода структуры TaiiH из ферритной (характерной для хромистых сталей) или аустенито-ферритной (содержащей Ni до 8%) в более гомогенное аустенитное состояние во всем диапазоне температур, вплоть до плавления. Это обеспечивает меньшую склонность к росту зерна, лучшие. механические свойства, эффективно понижает порог хладноломкости, делает сталь более коррозионностойкой. Никель, так же, как и хром, образует с железо.м твердые растворы при всех пропорциях компонентов, поэтом сталь легко пассивируется на воздухе, обеспечивая высокую коррозионную стойкость в слабоокисляющих и неокисляющих растворах. В соответствии со структурой и содержанием основных легирующих элементов (-18% Сг и от 8 до 10% Ni) такие отечественные стали принято соответственно называть аустенитные хромоникелевые коррозионностойкие (нержавеющие) стали типа 18-8, 18-9, 18-10", а в сокращенном современном варианте - стали типа 18-10 .  [c.82]


Смотреть страницы где упоминается термин Железо хромистых сталях : [c.258]    [c.261]    [c.310]    [c.202]    [c.28]    [c.29]    [c.40]    [c.53]    [c.168]    [c.169]    [c.57]    [c.390]   
Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.112 ]



ПОИСК



Железо i сталь

Сталь хромистая



© 2025 Mash-xxl.info Реклама на сайте