Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прецессия атомов

Прецессия атомов в магнитном поле  [c.93]

Прецессия атомов в магнитном поле. Прежде чем переходить к другому магнитомеханическому эффекту, рассмотрим поведение атома в магнитном поле. Из электродинамики известно, что на магнитный момент в магнитном поле действует момент сил  [c.224]

Если магнитное поле не перпендикулярно плоскости электронной орбиты, то диамагнитный э( )фект также определяется величиной Юн, которая в общем случае я вляется угловой скоростью ларморовской прецессии электронной орбиты вокруг направления магнитного поля. Вся система электронов (иона, атома, молекулы) дополнительно к своему нулевому движению начинает вращаться с постоянной угловой скоростью Юн вокруг направления поля.  [c.144]


Если в атоме имеется г электронов, то дополнительный магнитный момент всего, атома из-за ларморовской прецессии будет  [c.144]

Взаимодействие магнитных моментов щ и ц приводит к тому, что механические моменты 1 и з электрона не сохраняют свое положение в пространстве, а совершают прецессию вокруг вектора полного момента ] = 1+з. В этих условиях квантовые числа т и ms теряют смысл. Поэтому, если необходимо учитывать магнитное взаимодействие, состояние электрона в атоме следует характеризовать четверкой квантовых чисел п, I, Ш].  [c.57]

С точки зрения наглядной векторной модели атома взаимодействие электронов вызывает прецессию векторов их моментов количества движения вокруг векторов некоторых суммарных моментов. Величины суммарных моментов, характеризующие определенную взаимную ориентацию моментов электронов, а следовательно и энергию их взаимодействия, служат для классификации состояния атома в целом. Различные схемы сложения моментов электронов в те или иные суммарные моменты соответствуют, как принято говорить, разным типам связи электронов в атоме.  [c.60]

Взаимодействие магнитных моментов электронов, которое в случае нормальной связи является слабым, приводит к прецессии векторов Ь и 8 вокруг вектора Л полного момента количества движения атома  [c.60]

Рис. 98. Схема простейшей одноэлектронной системы во внешнем электрическом поле ё — внешнее электрическое поле ср — угол наклона плоскости орбиты электрона к оси 2 О — ядро атома С — электрический центр тяжести орбиты электрона, е — электрон на орбите а н Ь — большая и малая полуоси орбиты м — угловая частота прецессии орбиты относительно оси Рис. 98. Схема простейшей одноэлектронной системы во <a href="/info/606898">внешнем электрическом</a> поле ё — <a href="/info/606898">внешнее электрическое</a> поле ср — угол <a href="/info/427972">наклона плоскости орбиты</a> электрона к оси 2 О — ядро атома С — электрический <a href="/info/6461">центр тяжести</a> <a href="/info/402194">орбиты электрона</a>, е — электрон на орбите а н Ь — большая и малая полуоси орбиты м — <a href="/info/12042">угловая частота</a> <a href="/info/33106">прецессии орбиты</a> относительно оси
Если в процессе прохождения однородного магнитного поля Дд угол между магнитным моментом атомов и направлением магнитного поля изменяется, то траектория атомов в неоднородном поле магнита также изменяется. Следовательно, соответствующие атомы уже не попадут в приемник Я атомов. Таким образом, если снять кривую зависимости тока атомов от частоты вращения дополнительного магнитного поля, то она будет иметь вид, показанный на рис. 77. Кривая имеет резонансный характер и обладает резко выраженным минимумом. Измерив частоту мин вращающегося поля, соответствующего минимуму тока атомов, мы получаем частоту прецессии Wj = (0 атомов в однородном магнитном поле. Затем по формуле (40.2) определяем гиромагнитное отношение yj =  [c.227]


Разобранные нами в предыдущем параграфе закономерности относятся к случаю слабого поля, т. е, такого поля, которое вызывает расщепление линий, малое по сравнению с шириной мультиплетной структуры. С точки зрения модели это означает, что внешнее магнитное поле заметным образом не нарушает связи между моментами, а частота ларморовской прецессии мала по сравнению с частотой прецессии отдельных моментов атома относительно результирующего момента.  [c.353]

Рис. 301. Прецессия магнитных моментов атома в слабом внешнем магнитном поле. Рис. 301. Прецессия <a href="/info/16491">магнитных моментов</a> атома в слабом внешнем магнитном поле.
Диамагнетики — это вещества, атомы, ионы или молекулы которых не имеют результирующего магнитного момента при отсутствии внешнего поля. Во внешнем магнитном поле они намагничиваются противоположно приложенному полю, т. е. имеют отрицательную магнитную восприимчивость и < 0. Отрицательная восприимчивость является следствием прецессии орбит электронов вокруг направления внешнего поля (прецессия Лармора).  [c.6]

В соответствии с теорией Ланжевена диамагнетизм вещества обусловлен прецессией электронных орбит атома по отношению к оси, которая проходит через ядро атома в направлении внешнего магнитного поля. В результате этой прецессии атом приобретает магнитный момент, направленный против приложенного внешнего магнитного поля. Следовательно, вектор намагниченности всего диамагнетика в целом направлен против поля. (Как видно из изложенного, природа диамагнетизма не может быть описана на основе представлений об элементарных магнитах, рассмотренных в начале этого параграфа.)  [c.42]

ГО ПОЛЯ магнитными моментами. При включении поля возникает прецессия электронных оболочек вокруг направления магнитного поля — прецессия Лармора. Еще более элементарное описание этого процесса таково при включении магнитного поля в электронных оболочках атома индуцируются токи, они не затухают, когда поле перестает меняться, так как в атомных контурах отсутствует сопротивление. По известному правилу Ленца направление этих токов таково, что индуцированные магнитные моменты и, следовательно, намагничение противоположны по направлению внешнему полю. В электродинамике доказывается, что намагничение диамагнетиков пропорционально напряженности поля Н (так же как и для парамагнетиков вдали от области насыщения), но в отличие от парамагнетиков восприимчивость диамагнетиков отрицательна к т  [c.75]

Под влиянием орбитального движения электронов атомов возникают магнитные моменты. Однако из-за неупорядоченности действия этих люментов по направлению средний магнитный момент получается равным нулю. Если же на электроны воздействовать внешним магнитным полем, то, как это было показано на рис. 3-3-1, возникает прецессия Лармора. Электрон обладает отрицательным электрическим зарядом —е, и при возникновении прецессии Лармора вокруг оси, расположенной вдоль вектора напряженности внешнего магнит-  [c.172]

Чему равна ларморова частота прецессии атома в магнитном поле  [c.224]

На рис. 98 схематически показана простейшая атомная система с одним электроном (атом водорода или водородоподобный ион), какой она представляется в теории Бора. Поле в атоме водорода можно считать число кулоновским. Состояния с различными значениями побочного квантового числа I и одинаковыми главными квантовыми числами и в атоме водорода вырождены и обладают практически одинаковыми энергиями. Орбита электрона в кулоновском поле не совершает прецессии вокруг ядра, а имеет вполне определенное положение. Электрон, обращаясь по орбите, наиболее медленно движется вдали от ядра. Поэтому электрический центр тяжести орбиты электрона находится в точке С. Такая атомная система обладает стационарным дипольным моментом. В этом случае наблюдается линейный игтарк-эффект — линейная зависимость расщепления линий от величины электрического поля.  [c.264]


Соответствующий расчет показывает, что в этом случае возмущение носит следующий характер орбита превращается из кеплерова эллипса в эллипс, совершающий плоскую прецессию с угловой скоростью о, зависящей от азимутального квантового числа п . Это возмущение подобно возмущению, вызванному зависимостью массы от скорости (см. 5), но значительно больше. Наличие прецессии, зависящей от ведет к тому, что и энергия будет зависеть от квантового числа п . Указанный расчет подтверждает вывод Д. С. Рождественского о том, что число возможных орбит в атоме щелочного металла то же, что и в водородном атоме, но что у щелочных металлов  [c.46]

Аналогичная картина наблюдается при помещении атома в магнитное поле Н (рис. 11.7, б). Электрон, движущийся по орбите, создает замкнутый ток, обладающий магнитным моме нтом. Магнитное поле стремится развернуть орбиту электрона перпендикулярно Н, что вызывает прецессию ее вокруг направления поля. Расчет показывает, что угловая частота такой прецессии равна  [c.291]

ТЕОРЕМА (Ирншоу система неподвижных точечных зарядов электрических, находящихся на конечных расстояниях друг от друга, не может быть устойчивой Карно термический КПД обратимого цикла Карно не зависит от природы рабочего тела и являегся функцией абсолютных температур нагревателя и холодильника Кастильяно частная производная от потенциальной энергии системы по силе равна перемещению точки приложения силы по направлению этой силы Кельвина сила (или градиент) будет больше в тех точках поля, где расстояние между соседними поверхностями уровня меньше Кенига кинетическая энергия системы равна сумме двух слагаемых — кинетической энергии поступательного движения центра инерции системы и кинетической энергии системы в ее движении относительно центра инерции Клеро с уменьшением радиуса параллели поверхности вращения увеличивается отклонение геодезической линии от меридиана Кориолнса абсолютное ускорение материальной точки рав1Ю векторной сумме переносного, относительного и кориолисова ускорений Лармора единственным результатом влияния магнитного поля на орбиту электрона в атоме является прецессия орбиты и вектора орбитального магнитного момента электрона с некоторой угловой скоростью, зависящей от внешнего магнитного поля, вокруг оси, проходящей через ядро атома и параллельной вектору индукции магнитного поля Остроградского — Гаусса [для магнитного поля магнитный поток сквозь произвольную замкнутую поверхность равен нулю для электростатического поля <в вакууме поток напряженности его сквозь произвольную  [c.283]

Развитие получает также мюонная химия сложных атомов. Напр., при захвате р на орбиту мезоатомов неона ц аргона образуются мезоатомы соответственно с электронными оболочками атомов фтора и хлора. Взаимодействие спинов мюона и нераспаренного электрона атомных оболочек этих галогенов приводит к тому, что в магн. поле их суммарный магн. момент прецессирует с частотой мюония. Наблюдение этой прецессии позволяет измерять абс. скорости реакций атомов фтора, хлора ы т. д.  [c.93]

Классическое описание. С. в. допускают наглядную классич. интерпретацию рассмотрш цепочку атомов, расстояние между к-рыми а, в маги, поле Н. Если волновой вектор к = О, то все спины синфаано прецессируют вокруг Н с частотой Юд (однородная прецессия). При к 0 прецессия спинов неоднородна — разные спины повёрнуты на разные углы, разность углов поворота равна к (рис. 1). Частота  [c.637]

В случае длинных волн колебания магн. моментов можно описывать как колебания макроскопич. векторов — плотностей магн. моментов (намагниченностей) подрешёток (r,t) — ф-ций координаты г и времени t. При неоднородной прецессии длины векторов lMj = = где Pi — магн. момент атома 1-й подрешёткн,  [c.637]

Эффект предсказал в 1926 Л. Томас (L. Thomas) он учёл связанные с прецессией поправки при расчёте спин-орби-тального взаимодействия в атоме водорода, получил согласующуюся с экспериментом тонкую структуру спскг-ральных линий и правильно описал аномальный Зеемана  [c.123]

ЯДЕРНЫЙ ГИРОСКбП —квантовый гироскоп, чувствительным элементом к-рого является ансамбль ориентированных атомных ядер, обладающий макроскопич. магн. моментом М (см. Ядерный парамагнетизм). Принцип действия Я. г. основан на зависимости частоты прецессии вектора М в пост, магн, поле Я от угл. скорости вращения Я. г. Так как ядра с чётными числами протонов Z и нейтронов N имеют нулевой магн. момент (см. Ядро атомное), то в Я. г. используются изотопы с нечётным массовым числом A=N+Z—iHs, э Кг, Ц Хс, jo Hg, io Hg. Эти атомы имеют также замкнутую электронную оболочку, и их полный магн. момент определяется только магн. моментом ядра. Для ослабления влияния релаксац. процессов в Я. г. используются газообразные активные среды.  [c.673]

Явление диамагнетизма характеризуется отрицательным магнитным моментом. Это можно объяснить наличием орбитального движения электрона и прецессии Лар.мора. Если приложить усилие к оси волчка с целью отклонить указанную ось на некоторый угол от вертикали, волчок, продолжая вращение вокруг своей оси, начнет прецессировать относительно вертикали. Подобное двилсение, которое совершает электрон в атоме, называют прецессией Лармора. Если учесть, что орбитальный момент количества движения электрона Р вызывает магнитный момент, и,ть то в соответствии с формулой (3-2-9) можно написать  [c.171]


Смотреть страницы где упоминается термин Прецессия атомов : [c.225]    [c.227]    [c.437]    [c.475]    [c.219]    [c.226]    [c.226]    [c.212]    [c.612]    [c.169]    [c.332]    [c.702]    [c.83]    [c.93]    [c.93]    [c.226]    [c.637]    [c.47]    [c.396]    [c.176]    [c.181]    [c.184]    [c.44]   
Атомная физика (1989) -- [ c.204 ]



ПОИСК



Мир атома

Прецессия

Физическая природа эффектов. Опыт Эйнштейна-де Гааза. Прецессия атомов в магнитном поле. Эффект Барнетта Экспериментальные методы измерения магнитных моментов



© 2025 Mash-xxl.info Реклама на сайте