Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Примесная электропроводность полупроводников

Примесная электропроводность полупроводников  [c.63]

Используя данные конкретных материалов, взятые из кривых, вычисляют энергию активации W примесной электропроводности полупроводника при различной концентрации примеси. В области собственной электропроводности по подобному выражению может быть определена ширина запрещенной зоны данного полупроводникового материала.  [c.243]

Собственная и примесная электропроводности полупроводников  [c.63]


Большая термо-э. д. с. полупроводников позволяет эффективно использовать их в качестве термоэлектрических материалов. Выбор полупроводника и подбор донорной и акцепторной примесей производят в соответствии с температурным диапазоном работы термоэлементов, учитывая, что они работают в области примесной электропроводности полупроводника.  [c.92]

Как видно из рис. 157, примесная электропроводность полупроводников для своего появления требует меньших энергетических воздействий, вследствие чего она обнаруживается при более низких температурах, чем собственная электропроводность полупроводника.  [c.285]

Используя опытные данные и строя кривые, подобные кривой, приведенной на рис. 160, а, вычисляют энергию активации w при собственной и примесной электропроводностях полупроводника.  [c.289]

Используя опытные данные и строя кривые, подобные кривой рис. 8-4, а, вычисляем энергию активации ш примесной электропроводности полупроводника.  [c.333]

ПРИМЕСНАЯ ЭЛЕКТРОПРОВОДНОСТЬ ПОЛУПРОВОДНИКОВ 247  [c.247]

Вследствие теплового движения электроны могут переходить в более высокое энергетическое состояние. В полупроводнике п-типа электроны из примесных уровней, находящихся под зоной проводимости, переходят в зону проводимости, обусловливая тем самым электропроводность полупроводника. В этом случае носителями электрического заряда являются электроны.  [c.602]

Рассмотрим примесные полупроводники. Содержащиеся в них примесные ато.мы могут оказывать сушественное влияние на электропроводность полупроводника. На рис. 3.5, а, в, д схематически представлены процессы образования свободных носителей заряда, способных участвовать в электропроводности, в собственном и примесном кремнии, эти же процессы показаны и на энергетических диаграммах (рис. 3.5, б, г, е). Для кремния характерны примеси замещения, V. е. атомы примеси заменяют атомы кремния в узлах кристаллической решетки.  [c.50]

На рис. 3.11 приведена температурная зависимость концентрации электронов в зоне проводимости для полупроводника п-типа. На кривой имеются три характерных участка аб - для примесной электропроводности, бв - для области истощения примеси и вг - для собственной электропроводности.  [c.58]

Полупроводники G ионными решетками ( dS, PbS, оксиды). Экспериментальные данные о ионных полупроводниках показывают, что в оксидах и сульфидах большей частью наблюдается следующая закономерность. Если полупроводник может обладать электропроводностью п- и >-типов, как, например, PbS, то избыток серы по отношению к его стехиометрическому составу или примесь кислорода вызывает у него дырочную электропроводность, и избыток металла — электронную. В полупроводниках с одним типом примесной электропроводности увеличение числа дырок в полупроводнике р-типа получается за счет избытка кислорода или серы, а увеличение числа электронов в полупроводнике и-типа — за счет уменьшения числа этих элементов. Из опыта известно, что выдержка Си О (дырочный полупроводник) в печи с кислородной средой ведет к увеличению проводимости, а ZnO (электронный полупроводник) — к уменьшению ее.  [c.236]


Примесная проводимость полупроводников. Температурная зависимость электропроводности невырожденных примесных полупроводников, как и собственных, определяется в основном температурой зависимостью концентрации носителей. Поэтому качественный характер кривой зависимости а (Т) аналогичен кривой зависимости п (Т), показанной на рис. 6.4, в.  [c.191]

Полупроводники. Собственная и примесная электропроводность. Электронная и дырочная проводимость.  [c.319]

Типичная кривая зависимости электропроводности от температуры приведена на рис. 160, а. Такую кривую удобно строить в полулогарифмическом масштабе, откладывая по оси ординат 1п7, а по оси абсцисс 1/Г. Отрезки прямых в области низких температур характеризуют примесную электропроводность при различной концентрации носителей, затем имеется переходный участок (примесные уровни истощились ), а в области высоких температур проявляется собственная электропроводность полупроводника. На основании этого рисунка для линейных участков может быть написано следующее уравнение  [c.289]

Примесная электропроводность для своего появления требует меньших энергетических воздействий (0,01—0,1 эе), чем собственная, поэтому она обнаруживается при более низкой температуре, чем собственная электропроводность полупроводника.  [c.326]

Следовательно, этот электрон может быть легко переведен в свободное состояние и под действием приложенного напряжения принять участие в образовании электронного тока в полупроводнике (рис. 49). На рисунке видно, что основными носителями тока являются электроны, составляющие примесную электропроводность. Две дырки и соответствующие им два электрона получены в результате ионизации атомов германия. Эти носители тока обусловливают собственную электропроводность полупроводника. Общий ток в полупроводнике равен сумме электронного и дырочного токов, но электронный ток во много раз больше дырочного.  [c.90]

При комнатной температуре в полупроводниках наблюдается преимущественно примесная электропроводность (электронная или дырочная). С повышением температуры общая проводимость а полупроводников возрастает. В области высоких температур преобладает собственная электропроводность, при которой имеют место электронная и дырочная электропроводности.  [c.244]

Примесной проводимостью полупроводников называется их электропроводность, обусловленная внесением в их кристаллические решетки примесей примесных центров). Примесными центрами являются а) атомы или ионы посторонних химических элементов, внедренные в решетку полупроводника б) избыточные атомы или ионы элементов  [c.246]

Электропроводность полупроводников обычно зависит от наличия в них примесей и дефектов решетки и в определенном температурном интервале быстро увеличивается с ростом температуры. В гл. 3 мы показали, что примеси элементов П1 и V групп в решетке элементов IV группы являются соответственно акцепторами и донорами электронов. В полупроводниковых соединениях соответствующие примеси ведут себя аналогично. Вакансии также относятся к числу дефектов, оказывающих влияние на электропроводность. Энергию, необходимую для отрыва электрона от донора или присоединения электрона к акцептору, называют энергией ионизации примеси или дефекта. Энергетические уровни простых доноров и акцепторов расположены в запрещенной зоне, вблизи зоны проводимости и валентной зоны соответственно (рис. 37), а энергия ионизации определяется как разность энергии между примесным уровнем и соответствующей зоной. Если в кристалле одновременно присутствуют доноры и акцепторы электронов, то электроны с донорных уровней перейдут на акцепторные и не дадут никакого вклада в электропроводность поэтому число примесных носителей тока при одновременном присутствии доноров и акцепторов определится как (Ш]—[Л]), т. е. как разность концентраций доноров и акцепторов. Если Ш]>>ГЛ], полупроводник относится к  [c.72]

Опыт показывает, что с увеличением концентрации доноров (или акцепторов) наклон прямых 1па от 1/Т в области примесной проводимости уменьшается. Согласно (7.168) это значит, что уменьшается энергия ионизации примеси. При некоторой критической концентрации она обраш,ается в нуль. Для элементов пятой группы в германии эта критическая концентрация составляет ЗХ Х10 см , в кремнии 8-10 см . Полупроводник, в котором энергия ионизации примеси обратилась в нуль, называют часто полуметаллом. В нем концентрация электронов и электропроводность нечувствительны к температуре (кроме области температур, где начинается собственная проводимость).  [c.254]


Из формулы (3.42) следует, что с ростом уровень Ферми перемещается вверх (по шкале энергии) примерно с середины запрещенной зоны до расстояния порядка коТ ниже дна зоны проводим ости (при Ий Нс). Если N >N0, то система электронов в зоне проводимости становится вырожденной и поведение примесного полупроводника напоминает уже поведение металла (например, уменьшение электропроводности с ростом температуры).  [c.117]

В случае примесных полупроводников п- и р-типа выражение для удельной электропроводности обычно записывают в такой форме  [c.128]

При введении в кремний атома элемента V группы Периодической системы элементов Д. И. Менделеева (например, мышьяка As) четыре из пяти его валентных электронов вступают в связь с четырьмя валентными электронами соседних атомов кремния и образуют устойчивую оболочку из восьми электронов. Девятый электрон оказывается слабо связанным с ядром пятивалентного элемента, он легко отрывается и превращается в свободный электрон (рис. 3.5, в), дырки при этом не образуется. На энергетической диаграмме этот процесс соответствует переходу электрона с уровня доноров (f jj в свободную зону (рис. 3.5, г). Примесный атом превращается в неподвижный ион с единичным положительным зарядом. Примесь этого типа называется донорной, а полупроводники, в которые введены атомы доноров, - электронными или п-типа электропроводности. В таких полупроводниках свободных электронов больше, чем дырок, и они обладают преимущественно электронной электропроводностью.  [c.51]

Если в кремний введен атом трехвалентного элемента Ш группы Периодической системы элементов Д. И. Менделеева (например, бора В), то все три его валентных электрона вступают в связь с четырьмя электронами соседних ато-.мов кремния. Для образования устойчивой оболочки из восьми электронов не хватает одного. Им является один из валентных электронов, отбираемый от ближайшего соседнего атома, у которого в результате образуется незаполненная связь - дырка (рис. 3.5, д). На энергетической диаграмме этот процесс соответствует переходу электрона из валентной зоны на уровень акцепторов Wa и образованию в валентной зоне дырки (рис. 3.5, е). Примесный атом превращается в неподвижный ион с единичным отрицательным зарядом, свободного электрона при этом не образуется. Примесь такого типа называется акцепторной, а полупроводники, в которые введены атомы акцепторов, - дырочными или р-типа электропроводности. Дырок в них больше, чем свободных электронов. Поэтому эти полупроводники обладают преимущественно дырочной электропроводностью.  [c.51]

Для примесного полупроводника формула для электропроводности в общем виде будет иметь следующий вид  [c.272]

Физические свойства германия приведены в табл. 8-3. Удельная проводимость германия с различной концентрацией мышьяка зависит от температуры. Из рис. 8-17 видны области температур, в которых проявляются собственная и примесная составляющие электропроводности германия. Кроме того, видно, что при большом содержании примесей (кривая 6) имеем вырожденный полупроводник.  [c.254]

Рис. 7.9. Зависимость электропроводности примесных полупроводников от Рис. 7.9. <a href="/info/118219">Зависимость электропроводности</a> примесных полупроводников от
Температурная аасисимость удельной проводимости полупроводника есть результат изменения концентрации и подвижности носителей заряда (рис. 8-6). В области низких температур полупроводник характеризуется примесной электропроводностью, а в области высоких температур — собственной электропроводностью. В области примесной электропроводности приведены три кривые для различных значений концентрации примесей, вплоть до вырождения полупроводника, когда зависимость его удельной проводимости в некотором интервале температур стано-аится подобной зависимости удельной проводимости металлов.  [c.243]

Экситоны. Как уже указывалось, при возбуждении собственной фотопроводимости электроны из валентной зоны перебрасываются в зону проводимости и становятся свободными. Однако возможно и иное течение процесса, когда возбужденный электрон не разрывает связи с дыркой, возникающей в валентной зоне, а образует с ней единую связанную систему. Такая система была впервые рассмотрена Я. И. Френкелем и названа им экситоном. Экситон сходен с атомом водорода в обоих случаях около единичного положительного заряда движется электрон и энергетический спектр является дискретным (рис. 12.9). Уровни энергии экситоиа располагаются у дна зоны проводимости. Так как экситоны являются электрически нейтральными системами, то возникновение их в полупроводнике не приводит к появлению дополнительных носителей заряда, вследствие чего поглощение света не сопровождается увеличением проводимости полупроводника. При столкновении же с фоноиами, примесными атомами и другими дефектами решетки экситоны или рекомби-иируют, или разрываются . В первом случае возбужденные атомы переходят в нормальное состояние, а энергия возбуждения передается решетке или излучается в виде квантов света во втором случае образуется пара носителей — электрон и дырка, которые обусловливают повышение электропроводности полупроводника,  [c.327]

Носители заряда разогреваются не только пост, током, но также при поглощении ими эл.- магн. излучения, Возникающее при этом изменение электропроводности полупроводника представляет собой один из механизмов фотопроводимости ir используется для создания чувствительных приёмников излучения миллиметрового и субмиллиметрового диапазонов. Г. э. возникают также при генерации носителей заряда светом с энергией фотонов Доз, превышающей ширину запрещённой зоны g на величину, значительно б6льн1ую а также (в случае примесных полупроводников) светом с энергией фотонов, существенно превышающей энергию ионизации примесных центров (фоторазогрев). Часть фотоэлектронов, создаваемых в полупроводнике р-типа светом с рекомбинирует с дырками  [c.520]


Рис. 7.23. Зависимость удельной электропроводности невырожденного примесного полупроводника от температуры ( Vdi Рис. 7.23. Зависимость <a href="/info/88274">удельной электропроводности</a> невырожденного <a href="/info/22608">примесного полупроводника</a> от температуры ( Vdi<A d2<iVd3)
Акцепторные уровни расположены выше потолка валентной зоны, и при наличии энергии активации АЕд электроны л-гз валентной зоны могут переходить на указанные уровни, -оставляя в зоне незанятые энергетические уровни — дырки. Этот переход сопровождается превращением акцепторов в отрицательно заряженные ионы, которые также не участвуют н электропроводности. Такой полупроводник называют примесным полупроводником р-типа (для него характерна дырочная проводимость). Таким образом, в противоположйость собственной проводимости примесная проводимость осуществляется носителями заряда только одного знака — электронами, которые поставляются донорами в свободную зону, нли дырками путем захвата электронов из валентной зоны акцепторами.  [c.92]

В первом случае атомы легирующей примеси имеют большее число валентных электронов, чем атомы полупроводника. Такую примесь называют донорной. Вследствие введения донорной примеси после образования химических связей примесного атома с окружающими его атомами полупроводника один валентный электрон оказывается лишним , т. е. не участвует в химических связях. Поэтому достаточно лишь небольшой энергии Ео (рис. 3, б), чтобы оторвать от примесного атома и сделать свободным этот валентный электрон, т. е. перевести его в зону проводимости. При этом образуется неском-пенсированный положительный заряд, который отличается от положительно заряженной дырки, способной перемещаться по кристаллу, тем, что остается неподвижным в кристаллической решетке. Легирование полупроводника донорной примесью увеличивает концентрацию электронов в зоне проводимости при неизменной концентрации дырок в валентной зоне. При этом электропроводность осуществляется в основном электронами, находящимися в зоне проводимости. Такие полупроводники называют электронными, или полупроводниками п-типа электропроводности.  [c.8]

Доноры. Заполненные при отсутствии внешних энергетических воздействий (теплота, свет) примесные уровни расположены р запрещенной зоне около дна зоны проводимости (рис. 8-1, б). При этом энергия активации примесных атомов меньше, чем ширина запрещенной зоны основного полупроводника, а потому при нагреве тела переброс электронов примеси будет опережать возбуждение злектронов решетки. Положительные заряды, возникшие у отдален-ь ых друг от друга примесных атомов (на рис. 8-1,6 уровни примеси г оказаны с разрывами), остаются локализованными, т. е. не могут блуждать по кристаллу и участвовать в электропроводности. Полу-лроводник с такой примесью имеет концентрацию электронов, большую, чем концентрация дырок, появившихся за счет перехода электронов из валентной зоны в зону проводимости, и его называют полупроводником п-типа, а примеси, поставляющие электроны в зону проводимости, — донорами.  [c.233]

Примеси внедрения. Структуры типа алмаза. Тип электропроводности определяется размерами и электроотрицательностью примесных атомов, внедряющихся в междоузлия решеток полупроводников IV группы периодической системы. Эксперимент показывает, что, в противоречие с указанным выше правилом валентности, литий (I группа), внедряясь в междоузлия решетки германия, будет донором, а кислород (VI группа) — акцептором. Внедрение большого по размерам атома лития в тесные междоузлия решетки германия оказывается возможным только после его ионизации вследствие слабой связи валентного электрона, легко о грыва-ющегося от своего атома в среде с большой диэлектрической проницаемостью (б германия-16). Образовавшийся ион лития меньших размеров может уже внедряться в тесные междоузлия решетки, а освободившийся электрон обусловливает электропроводность п-типа. Внедрение в междоузлия решетки полупроводника атомов кислорода, имеющих сравнительно небольшие размеры и большую электроотрицательность, приводит к захватам электронов из атомов полупроводника, вследствие чего возникает электропроводность р-типа. Если атом Ge или Si под влиянием энергетического воздействия перебрасывается в междоузлие, то образуются два примесных уровня донорный внедренного атома и акцепторный пустого узла.  [c.236]

Электропроводность твердых кристаллических тел изменяется при деформации вследствие увеличения или уменьшения (растяжение, сжатие) межатомных расстояний, приводящих к изменению концентрации и подвижности носителей. Концентрация носителей заряда может стать меньше или больше вследствие изменения ширины зиергетических зон кристалла и смещения примесных уровней, что в свою очередь изменяет энергию активации носителей и изменяет их эффективные массы, входящие в выражения концентрации Г10сителеи заряда. Подвижность носителей заряда меняется из-за уменьшения (увеличения) амплитуды колебания атомов при их сближении (удалении). Для металлов основным является изменение подвижности, а для полупроводников изменение концентрации носителей заряда, определяемое энергией активации. Ширина запрещенной зоны может как увеличиваться, так и уменьшаться при сближении атомов, и у разных полупроводников одна и та же деформация может вызывать как увеличение, так и уменьшение удельной проводимости.  [c.244]

Из очищенного поликристалличе-ского германия или кремния выращивают, как правило, способом Чохраль-ского, монокристаллы, кристаллографическая ориентация которых определяется ориентацией затравки вращающейся и вытягиваемой из так же вращающегося расплава. Этот способ обеспечивает дополнительную очистку монокристалла полупроводника от примесей (табл. 3). Осуществляется он в вакууме или в атмосфере очищенного инертного газа или водорода. Чистота кремния определяется в основном содержанием примесного бора, очистка от которого методом безтигельной зонной плавки малоэффективна (табл. 2). Влияние же примесного бора на свойства кремния велико (табл. 4). В настоящее время разработаны способы очистки кремния, позволяющие получать монокристаллнческий кремний с электропроводностью, близкой по значению к собственной.  [c.401]


Смотреть страницы где упоминается термин Примесная электропроводность полупроводников : [c.656]    [c.284]    [c.234]    [c.91]    [c.244]    [c.827]    [c.254]    [c.214]   
Смотреть главы в:

Справочное руководство по физике  -> Примесная электропроводность полупроводников



ПОИСК



Полупроводники

Полупроводники примесные

Собственная и примесная электропроводности полупроводников

Электропроводность

Электропроводность полупроводников

Электропроводность примесная



© 2025 Mash-xxl.info Реклама на сайте