ПОИСК Статьи Чертежи Таблицы Состояние невесомости из "Физические основы механики " Среди рассмотренных в предыдущем параграфе случаев совершенно особое место занимает случай, когда a=g и деформации тел отсутствуют. Отсутствие деформаций позволяет утверждать что никакие силы, кроме сил тяготения, на тело не действуют (если какая-либо сила действует, то это может быть только сила тяготения). Этот особый случай, когда на тело действует извне (со стороны каких-либо других тел) только сила тяготения и поэтому тела находятся в не-деформированном состоянии i), называется состоянием невесомости ). [c.187] Происхождение этого названия связано с тем, что когда в телах отсутствуют деформации, то не возникают силы, действующие со стороны одной части тела на другую часть того же тела или со стороны одного тела на соприкасающееся с ним другое тело. Но эта последняя сила, в частности сила, с которой тело давит на подставку или натягивает подвес, как раз и называется силой веса. Это название ес-тествен1ю распространить и на силы, с которыми верхняя часть тела, лежащего на подставке, давит на нижнюю его часть это есть сила веса верхней части тела. Название состояние невесомости подчеркивает, что в этом состоянии отсутствуют силы веса в том расширенном смысле, который указан выше, т. е. упругие силы, действующие между частями одного и того же тела или между соприкасающимися телами и обусловленные деформациями, которые возникли в результате движения тел под действием сил тяготения и каких-либо других сил ). [c.187] Подчеркнем, что деформации тел отсутствуют только в случае, когда силы тяготения действуют извне со стороны каких-либо других тел (находящихся так далеко от рассматриваемых, что эти последние испытывают со стороны других тел одинаковые ускорения). Силы же тяготения, действующие между рассматриваемыми телами, могут вызвать деформации этих тел. Например, в описанном выше случае груза, лежащего на поверхности Земли, между Землей и грузом действуют силы тяготения, вследствие чего и груз и слой Земли оказываются деформированными. [c.187] Конечно, когда на тело вообще не действуют никакие силы, оно также не деформировано и находится в состоянии невесомости но этот специальный случай полного отсутствия сил не нуждается в особом рассмотрении и редко осуществляется. [c.187] Когда происходит соударение тел, возникают деформации и силы, принципиально ничем не отличающиеся от тех, которые возникают во всех случаях, когда при непосредственном соприкосновении тел эти тела сообщают друг другу ускорения однако эти силы действуют только кратковременно. Между тем лишь длительное отсутствие деформаций и упругих сил является характерным признаком состояния невесомости. Если происходит со ударение тел, находящихся в состоянии невесомости, между соударяющимися телами действуют упругие силы только до тех пор, пока тела не вышли из соприкосновения (при абсолютно упругом ударе) или не стали двигаться как одно целое (при абсолютно неупругом ударе) только в течение очень короткого времени соударяющиеся тела при соприкосновении сообщают друг другу различные ускорения. Но все же, строго говоря, для состояния невесомости характерно, что все тела испытывают одинаковое ускорение не все время, а исключая те короткие промежутки времени, когда происходят соударения, которые приводят к деформациям соприкасающихся тел, вызывающим появление упругих сил взаимодействия. [c.188] В момент, когда рамка и маятник начинают падать, на них действует только сила земного тяготения и наступает состояние невесомости. Поскольку в этот момент маятник не движется относительно рамки, то и все время, пока происходит свободное падение и сохраняется состояние невесомости, маятник не движется относительно рамки. В таком отклоненном от отвеса положении маятник мог бы покоиться относительно неподвижной системы координат только в том случае, если бы сила тяготения отсутствовала. Этот опыт демонстрирует еще одну характерную черту состояния невесомости отсутствие выделенного направления вниз , которое в обычных условиях определяется направлением силы тяготения направление вниз определяется положением отвеса, между тем маятник (отвес) в описанном опыте может занимать любое положение. [c.189] Видоизменив описанный опыт, можно продемонстрировать характерную черту относительного движения тел, находящихся в состоянии невесомости. Когда ра.мка неподвижна, а маятник колеблется, то он проходит через отвесное положение с некоторой скоростью. Если в этот момент освободить рамку, то она начнет падать, а маятник будет продолжать вращаться вокруг оси с той же угловой скоростью, какой он обладает в момент начала падения рамки (рис. 92,6). Правда, в этом случае при падении рамки и вращении маятника штанга, удерживающая тело маятника на окружности, деформирована и сообщает ему центростремительное ускорение (деформировано и тело маятника, действующее на штангу с центробежной силой ). Но движение маятника все же сохраняет ту особенность, которая характерна для движения тел, находящихся в состоянии невесомости движение это происходит так, как если бы сила тяготения отсутствовала. Представим себе, что в момент, когда началось свободное падение рамки и маятника, соединяющая тело маятника с рамкой штанга исчезла так как при этом наступило состояние невесомости, то тело маятника продолжало бы двигаться относительно рамки горизонтально с той начальной скоростью, какую оно имело в момент, когда наступило состояние невесомости (относительно неподвижной системы отсчета тело маятника двигалось бы по параболе). [c.189] в состоянии невесомости сила тяготения сообщает всем телам одинаковые ускорения, но при этом не изменяет состояния тел (тела не испытывают деформации) и не изменяет характера движения одного тела оттасительно другого (тела движутся одно относительно другого без ускорений). Словом, в состоянии невесомости сила тяготения сообщает всем телам одинаковое ускорение, но во всем остальном (деформации, относительные движения) тела ведут себя так, как будто сила тяготения отсутствует происходит так не потому, что сила тяготения перестает действовать , а именно потому, что сила тяготения делает свое дело — сообщает всем телам одинаковое ускорение. [c.189] Состояние невесомости наступает в баллистических ракетах ) и космических кораблях после того, как прекратилась работа двигателей и ракета или космический корабль вышли из плотных слоев атмосферы. Вначале под действием силы тяги реактивных двигателей (см. 124), направленной вверх, ракета или корабль движутся с большим ускорением о и набирают вертикальную скорость. В это время на корабль и находящиеся в нем тела, помимо силы земного тяготения и силы тяги двигателей, действует сила сопротивления воздуха, направленная против скорости корабля, т. е. ВНИИ, и несколько уменьшающая ускорение корабля. Но все же это ускорение а по величине значительно превосходит ускорение свободного падения g (например, по данным иностранной печати а может достигать 9—10 ). В этом случае корпус корабля и все тела в кабине корабля будут находится в таком же состоянии, как тела, взвешиваемые в кабнне лифта, движущегося кверху с ускорением а. [c.190] При этом, как мы видели, деформации всех тел и силы, действующие вследствие этого между частями одного тела и между соприкасающимися телами, будут в (g- -a)/g раз больше, чем в случае, когда на все эти тела действует только сила земного тяготения и они покоятся относительно Земли. Происходит увеличение деформаций, а значит, и обусловленных ими сил, возникающих в корпусе космического корабля и в телах, находящихся внутри корабля как мы уже знаем, обусловлено это увеличение тем, что при работе двигателей космический корабль и находящиеся в нем тела, помимо силы земного тяготения, испытывают силы непосредственного соприкосновения, сообщающие кораблю и всем телам в нем ускорение а, направленное в сторону, противоположную g. Но все выглядит так, как если бы на корабль, покоящийся относительно Земли, и на все находящиеся в нем тела действовала сила тяготения в g- -a)/g раз большая, чем сила земного тяготения, т. е. корабль и все тела в нем стали бы в (g- -a)/g раз тяжелее. Сила, которая как бы добавляется к силе земного тяготения,, может быть в 9—10 раз больше силы земного тяготения. Вследствие этого корпус корабля и все находящиеся в нем тела испытывают большие перегрузка— деформации тел и обусловленные ими силы возрастают и достигают значений, в 9—10 и больше раз превышающих те, которые существуют, когда корабль покоится на поверхности Земли. [c.190] После того как ракета или космический корабль достигли требуемой большой скорости, которая в зависимости от назначения ракеты или космического корабля должна быть различной (см. 76), двигатели выключаются если при этом космический корабль уже поднялся на такую высоту, где плотность атмосферы очень мала и поэтому она не создаег сколько-нибудь заметного сопротивления движению, то корабль и все заключенные в нем тела находятся под действием только сил тяготения Земли, Луны, планет и Солнца (какие из этих сил практически следует учитывать — зависит от места нахождения корабля). Вследствие этого для кораб.пя и всех находящихся в нем тел наступает состояние невесомости. Исчезают деформации тел и обусловленные ими силы, действующие со стороны частей тела друг на друга и со стороны одних тел на другие например, тела перестают давить на подставки, на которых они покоятся, и если тело приподнять над подставкой, то оно будет покоиться в таком положении ( висеть в воздухе) жидкость, налитая в сосуд, перестанет давить на дно и стенки сосуда, поэтому она не будет вытекать через отверстие внизу сосуда и ее надо будет через это отверстие выдавливать отвесы будут покоиться в любом положении, в котором их остановили. Тела, которым сообщена относительно кабины корабля начальная скорость в любом направлении, будут двигаться в этом направлении прямолинейно и равномерно (если пренебречь сопротивлением воздуха, находя-Н1егося в кабине), пока не придут в соприкосновение с другими телами, после чего возникнут явления типа соударения. [c.190] НИХ органов друг на друга, давление крови на стенки сердца и сосудов и т. п. В состоянии невесомости, наоборот, отсутствуют те деформации и связанные с ними силы давления частей тела космонавта и его внутренних органов друг на друга, которые привычны для человека, поскольку в нормальных условиях он не испытывает вертикальных ускорений, сравнимых по величине с ускорением силы тяжести не требуется прилагать мышечных усилий для того, чтобы удерживать руки или ноги в отклоненном от направления оси тела положении, — без всякого усилия со стороны человека рука или нога остаются в отклоненном от направления оси тела положении (подобно не имеющему начальной скорости маятнику в описанном выше опыте с маятником на падающей рамке) у космонавта исчезает представление о том, где верх и где нил (хотя направление вниз как направление к центру Земли полностью сохраняет свой геометрический смысл). [c.191] Когда космический корабль опускается на Землю и входит в более плотные слои атмосферы, снова становится заметным сопротивление воздуха, направленное навстречу скорости. Кроме того, для уменьшения скорости корабля часто применяют двигатели, создающие силу тяги, также направленную против скорости. Сила сопротивления воздуха и сила тяги тормозящих двигателей нарушают состояние невесомости, и при спуске корабля возникают перегрузки такого же характера, как и при подъеме корабля (конечно, величина и направление ускорения при спуске могут значительно отличаться от величины и направления ускорения при подъеме). Однако поскольку и в том и в другом случае ускорение будет иметь большую вертикальную составляющую, направленную вверх, то как при подъеме, так и при спуске возникают перегрузки такого характера, как будто сила земного тяготения сильно возрастает. [c.191] Вернуться к основной статье