Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термо-э.д.с. металлов

Термо-э.д.с. металлов 153, 159, 162, 170, 175, 176. 178, 180 -182, 185, 200, 212, 218, 271, 285, 295, 621, 668 Технеции 631  [c.932]

Температура, С Рис 3. Термо-э. д. с. металлов отношению к платине [88 .  [c.490]

Т а б л и ц а 25.4 Термо-э. д. с. металлов и сплавов при различных давлениях и температурах [4], мкв  [c.464]

Дифференциальная термо-э. д. с. металла Q определяется как коэффициент пропорциональности между разностью температур и вкладом металла в показание вольтметра  [c.258]


Для оценки значения термо-э. д. с. различных термометров обычно пользуются опытными значениями термо-э. д. с. металлов и сплавов в паре с чистой платиной. Вы-  [c.91]

Очевидно, что конкретный механизм рассеяния электронов играет для термоэлектричества важную роль. Можно, например, предположить, что электроны, имеющие большую скорость, должны рассеиваться атомами решетки под меньшими углами, чем электроны с меньшей скоростью. Другими словами, средняя длина свободного пробега электронов будет зависеть от их кинетической энергии. Это верно в целом, но конкретная взаимосвязь длины пробега и энергии сложна и сильно зависит от электронной структуры решетки. Сложность связи между длиной пробега и энергией электронов не дает возможности получить количественное описание термоэлектричества, хотя качественно картина явления проста. Другими словами, наших сведений о поверхности Ферми реального металла недостаточно для вычисления термо-э.д.с. Следует отметить, что для полупроводников ситуация проще, поскольку число электронов и дырок, участвующих в процессе проводимости, значительно меньше. В этом случае модель электронного газа, в которой частицы подчиняются статистике Максвелла — Больцмана, лучше отражает истинную природу явления.  [c.268]

Применительно к измерению температуры термопарами сложность связи между энергией электронов и их рассеянием приводит к тому, что термо-э.д.с. разных металлов оказываются очень сильно отличающимися друг от друга. Именно различие термо-э.д.с. разных сплавов делает возможным применение этого явления для измерения температуры, поскольку термопара всегда состоит из двух различных проводников и мерой температуры служит разность напряжений. Эта разность э.д.с. носит название эффекта Зеебека.  [c.268]

При температуре ниже дебаевской следует учитывать другие механизмы переноса, в частности перенос фононами, вклад которых до сих пор не рассматривался. Фононы обеспечивают теплопередачу в неметаллических веществах, где нет газа свободных электронов. В металлах и сплавах при низких температурах вклад фононов в теплопроводность оказывается заметным. Возникает поток фононов, взаимодействующих с другими фононами, электронами и атомами примесей, причем каждому такому акту соответствует своя длина свободного пробега. При высоких температурах средняя длина свободного пробега при электрон-фононном взаимодействии значительно больше, чем при фонон-фононном. Таким образом, по отношению к электронам решетка находится во внутреннем тепловом равновесии и рассмотренная выше термо-э.д.с. диффузионного происхождения оказывается основной. При низких температурах длина свобод-  [c.272]


С целью стандартизации термоэлектрических измерений и получения материала, относительно которого было бы удобно отсчитывать величины термо-э.д.с. различных чистых металлов и сплавов, было решено изготовить опорный электрод из слитка очень чистой платины. Такая практика возникает в 1922 г., когда в НБЭ проводилось сравнение термопар из различных стран. Эта работа будет вновь упомянута при обсуждении свойств термопары Р1—13 % КЬ/Р1. Было обнаружено, что платиновая проволока из плавки № 27 имеет наиболее отрицательную термо-э.д.с. по сравнению со всеми полученными ранее. Поскольку присутствие примесей в платине всегда ведет к росту термо-э.д.с., было решено, что получен образец очень чистой платины. Образцы проволоки из этой плавки получили название  [c.275]

Для практического применения термопар в термометрии, в частности при использовании Р1-67 в качестве стандартного электрода, интерес представляют только различия в термо-э.д.с. разных металлов и сплавов. Абсолютные значения термо-э.д.с. или коэффициент термо-э.д.с. конкретного материала менее важны. Поскольку, однако, величина термо-э.д.с. в сильной мере зависит от рассеяния электронов, эти данные весьма интересны для теории. Существует абсолютная шкала термо-э.д.с., основанная на электроде из свинца, материала с очень малой величиной термо-э.д.с. Идеальным стандартным материалом был бы такой, у которого термо-э.д.с. равна нулю. Такой стандартный  [c.276]

При продолжительном использовании платинородиевых термопар возникают значительные загрязнения, связанные с тем, что при температурах выше 500 °С родий окисляется сильнее. Этот эффект приводит к уменьшению содержания родия в сплаве и как следствие к падению термо-э.д.с. Окись родия разлагается при высоких температурах и часто бывает достаточно нагрева до 1250°С в течение 30 мин, чтобы полностью восстановить термо-э.д.с. термопары, работавшей длительное время в интервале от 500 до 900 °С. Окись родия имеет гораздо большую летучесть, чем оба металла, и ниже будет показано, каких мер предосторожности требует обращение с термопарой в герметичном чехле.  [c.279]

Pt — 10 % Rh. Предварительно было показано, что MgO не вступает в реакцию с платиной и ее сплавами. Однако и платина, и ее сплавы, которые практически полностью инертны по отношению к подобным окислам в воздухе, начинают реагировать с ними при понижении парциального давления кислорода ниже некоторого уровня. Окиси алюминия, циркония и тория в этих условиях разлагаются на кислород и свободный металл, который растворяется в электродах термопары. На рис. 6.5 показаны результаты исследования термопары, нагревавшейся до 1450 °С в течение 1400 ч, в результате чего ее термо-э.д.с. упала на величину, эквивалентную 200 °С. Видно, что в электроде из чистой платины оказалось очень много родия, попавшего туда как из электрода с 13 % родия, так и из чехла, где его было больше в связи с гораздо большим объемом. В той области платинового электрода, где температура была ниже 1200°С, загрязнение родием очень незначительно.  [c.284]

Эти термопары имеют более высокую термо-э.д.с. по сравнению с термопарами, описанными выше. Однако ими нельзя пользоваться при столь же высоких температурах в связи с более низкой точкой плавления электродов и быстрой порчей при окислении. В промышленности чаще всего применяются стандартизованные термопары типов Е, I, К п Т, которые изготавливаются во множестве вариантов в зависимости от условий их применения. Подробные сведения о рекомендуемых диаметрах проволок, материалах изоляции и чехлов и других требованиях, связанных с особенностями эксплуатации, содержатся в национальных стандартах (см., например, [2]) приведенное ниже краткое описание свойств термопар из неблагородных металлов может быть дополнено, например, сведениями из работы [40] и других источников.  [c.287]

Эта комбинация сплавов также широко применяется в промышленности. Термопара типа К имеет высокую чувствительность и устойчива к окислению вплоть до 1260 °С, но непригодна для работы в восстановительной атмосфере. Она успешно применяется вплоть до 4 К и так же, как и тип Е, отличается низкой теплопроводностью обоих электродов. Главное преимущество термопары типа К по сравнению с другими термопарами из неблагородных металлов состоит в значительно лучшей стойкости к окислению при высоких температурах. Однако уже в слабо восстановительной атмосфере на поверхности положительного электрода образуется зеленая окись хрома, что сопровождается заметным изменением термо-э.д.с. Этот эффект сильнее всего проявляется при температурах от 800 до 1050 °С. Термопара типа К. также очень чувствительна к следам серы и углерода в атмосфере.  [c.288]


Главное отличие нового сплава от старого состоит в том, что уровни в нем оказываются выше, чем необходимо для переходов при окислении внутренних областей металла, а малые добавки быстро окисляются с образованием непроницаемой пленки. Эти два обстоятельства стабилизируют термо-э.д.с. при высоких температурах. Возникновение ближнего порядка в сплаве N1—Сг было подавлено подъемом уровней до величины, при которой упорядочение оказывается невозможным. Новые сплавы имеют следующий состав  [c.291]

Материал Термо-э.д.с. относительно платины, мкВ/К Предельная температура металла при измерениях. К Температура плавления материала, К  [c.204]

Дальнейшее обсуждение вопроса о низкотемпературном минимуме сопротивления мы вынуждены ограничить опытами Макдональда и Пирсона, хотя и не можем утверждать, что эти опыты являются исчерпывающими и обязательно охватывают все особенности явления в целом. На фиг. 43 приведены результаты исследования сплавов меди с малым содержанием олова. Можно видеть, что аномальное сопротивление, связанное с появлением минимума, с увеличением концентрации олова возрастает по величине и достигает предела при концентрации - -0,005% олова. Этот результат представляет собой загадку. Действительно, трудно объяснить, почему явление, вызываемое атомами примеси , приходит к насыщению при столь малых концентрациях. Кривые зависимости абсолютной термо-э. д. с. этих образцов от температуры приведены на фиг. 43, а. Видно, что по сравнению с чистым металлом термо-э. д. с. сплавов при той же концентрации олова порядка  [c.212]

Современная теория переноса электронов в проводниках дает возможность получить выражение для абсолютной термо-э. д. с. S. При этом предполагается, что температурный градиент, возникающий в образце металла во время опыта, и действующее на пего электрическое поле вызывают пренебрежимо малое возмущение колебаний решетки. Выражение для. 5 имеет вид )  [c.213]

Следовательно, в замкнутой цепи термо-э. д. с. возможна лишь в случае разных металлов при разной температуре спаев.  [c.275]

Погрешности измерения температуры термопарами из неблагородных металлов и их сплавов. Допустимое отклонение, например, термо-э.д.с. ТХА от стандартной градуировочной зависимости в диапазоне —50...300°С составляет 0,16 мВ, что соответствует 4°С. Эта погрешность может быть значительно уменьшена (до 0,25°С) путем индивидуальной тарировки термопары. Однако, на самом деле, действительная погрешность измерения температуры во много раз больше. Дело заключается в том, что условия  [c.27]

Диапазон изменения электросопротивления у полупроводниковых материалов весьма широк (р = 10 - - 10 ом-см) однако материалы характеризуются некоторыми другими специфическими свойствами, отличающими их от металлов и изоляторов, Например, если электросопротивление металлов возрастает с повышением температуры, то у полупроводниковых материалов оно падает, т. е. полупроводники в большинстве случаев обладают отрицательным температурным коэффициентом электросопротивления примеси уменьшают электропроводность металлов, но увеличивают проводимость полупроводниковых материалов. Полупроводники обладают фотопроводимостью, т. е. при действии излучений у них возникают дополнительные свободные носители заряда. В приборной технике полупроводники нашли широкое применение, поскольку они могут служить выпрямительными элементами, генерировать огромные термо-э. д. с., усиливать ток, позволяют увеличить ресурс и надежность электронных устройств, уменьшить размеры и вес приборов, а также сократить потребление электрической энергии.  [c.279]

Имеется несомненная, в ряде случаев однозначная, связь между электрическими характеристиками и структурным состоянием металлов и сплавов после термической обработки или поверхностного упрочнения. Эти операции создают значительные сжимающие напряжения в поверхностных слоях и способствуют увеличению сопротивления -материалов разрушению. Физическая сущность происходящих при этом процессов связана с кристаллическим строением металлов. Для суждения о глубинных явлениях происходящих в недрах кристаллической решетки проводящих ток материалов, используют механические и физические методы испытаний, основанные на рентгеновском излучении, ультразвуковых колебаниях, магнитных явлениях, термо-э. д. с., электрическом сопротивлении и, наконец, вихревых токах.  [c.3]

Объемная составляющая термо-э. д. с. Концентрация носителей заряда в проводнике зависит от температуры. У металлов эта зависимость очень слабая и обусловлена термическим расширением, вызывающим изменение объема проводника. У полупроводников, наоборот, с увеличением температуры концентрация носителей может расти очень сильно. Поэтому на горячем конце полупроводника концентрация носителей заряда может оказаться выше, чем на холодном, вследствие чего от горячего конца к холодному возникает диффузионный поток, приводящий в -полупроводнике к образованию на холодном конце отрицательного объемного заряда, на горячем — положительного заряда. Эти заряды создают разность потенциалов Fgg, которая и представляет собой объемную составляющую термо-э. д. с.  [c.259]

У металлов термодиффузионная составляющая термо-э. д. с. также не равна нулю. Учет ее и контактной составляющей (9.7) приводит к следующему выражению для удельной термо-з. д. с. металла с параболической зависимостью энергии от волнового вектора  [c.260]

ТЕРМОЭЛЕКТРОДНЫЕ СПЛАВЫ Термоэлектродные сплавы применяют для изготовления термопар и компенсационных проводов. Сплавы для тер.мопар должны обладать большой термо-э. д. с. в паре с другими металлами или сплавами в интервале рабочих температур, постоянством термоэлектрических свойств и устойчивостью против окисления и действия высокой температуры. Сплавы для компенсационных проводов должны иметь заданную величину термо-э. д. с. в паре с определенным металлом или сплавом и обладать также постоянством термоэлектрических свойств.  [c.255]


Указанные две причины ставят границу точности при измерении температуры термопарами из неблагородных металлов. Даже если принять, что потенциометр, измеряющий термо-э. д. с. термопар, не вносит никаких погрешностей, то и в этом случае при температуре 400— 500° С вряд ли можно достичь точности измерения температуры выше 1 — 1,5 °С, а при температуре 800— 900° С — выше 3—4° С.  [c.104]

Направление перехода электронов от жидкого металла к металлу стенки или обратно (на горячем и охлаждаемом участках) зависит от характера термо-э.д. с. (величины, знака), возникающей в цепи, составленной из этих металлов. Термо-э.д. с. жидких металлов является линейной функцией температуры. В зависимости от сопряженного металла пары, она может быть возрастающей и убывающей. Для лития она заметно увеличивается, тогда как для остальных щелочных металлов уменьшается с повышением температуры, причем особенно сильно у рубидия и цезия [108]. Абсолютная термо-э.д. с. металла стенки в большой степени зависит от состава стали, фазовых и магнитных превращений и характера предварительной механической и термической обработки. Необходимые данные по этим вопросам отсутствуют в справочной и периодической литературе. Однако, интерполируя данные по другим сталям [21, 109], можно принять, что абсолютная термо-э. д. с., например, углеродистой стали (0,50% С) и стали типа 18-8Т, равна соответственно —4,6 и —3,4 MKejapad при 100° С и —6,4 и —4,8 MKejapad при 300° С. Значит, в теплообменниках с литием (Е- — ст>1) облегчается переход электронов от жидкого металла к стали и улучшается передача тепла, тогда как в натриевых, калиевых и особенно в рубидиевых и цезиевых теплообменниках контактное термическое сопротивление, вызываемое термо-э. д. с., должно быть большим и возрастать с повышением температуры.  [c.46]

Как отмечалось в гл. 2, ККТ давно рассматривает планы замены платинородиевой термопары платиновым терм ометром сопротивления в качестве интерполяционного прибора в МПТШ-68 вплоть до точки затвердевания золота. Нет сомнений, что платина сама по себе является прекрасным материалом для изготовления термометров сопротивления, работающих по крайней мере до 1100°С. Сложность создания практической конструкции термометра заключается лишь в том, чтобы найти способ закрепить проволоку таким образом, чтобы она не испытывала механических напряжений при нагревании и охлаждении, и обеспечить высокое сопротивление изоляции. Удельное электрическое сопротивление, как и термо-э. д. с., является характеристикой самого металла, однако электрическое сопротивление термометра в отличие от термо-э. д. с. является макроскопической характеристикой проволоки, из которой изготовлен термометр, и поэтому зависит от изменения ее размеров и даже от царапин на ней. При высоких температурах  [c.214]

Эти ограничения станут яснее, если кратко рассмотреть теорию термоэлектричества. Легко показать качественно, каким образом примеси, фазовый состав или дефекты решетки изменяют термо-э.д.с. термопары, а затем сделать выводы, касающиеся отжига термопары и обращения с ней, с тем чтобы получить хо-рощую воспроизводимость. Природа термоэлектричества хорошо известна, однако теория не может предсказать с нужной для практики точностью термоэлектрические свойства конкретного металла или сплава. Ниже будет показано, что термоэлектричество определяется особенностями рассеяния электронов про-  [c.265]

Смита и др. [68]), которые сконструировали сверхироиодящий гальванометр, пригодный для использования в жидком гелии, и применили его для измерения термо-э. д. с. в металлах при температурах ниже 4° К. Особенно интересны измерения вблизи перехода в сверхпроводящее состояние, где термо-э. д. с. быстро стремится к нулю. Необходимая для этих измерений чувствительность по папрян ению порядка 10 й была достигнута с тангенс-гальванометром, имевшим чувствительность по току порядка 10 а, благодаря тому, что сопротивление всей цепи удалось снизить до- Ю ом. При таком малом сопротивлении цепи R необходимо, чтобы и эффективная индуктивность Ьэфф, была как можно меньше, так как в противном случае постоянная времени t=Z/эфф./Л сек окажется слишком высокой. Чтобы удовлетворить этому требованию, постоянное магнитное поле гальванометра должно быть очень мало ( 10" гаусс).  [c.180]

Рассмотрим вопрос о том, сохраняется ли при наличии температурного градиента действительное термическое равновесие, упомянутое в конце п. 25. Заслуживает внимания тот факт, что хотя экспериментальные результаты по электропроводности в целом прекрасно согласуются с теорией, однако в случаях теплопроводности и термоэлектричества количественные расхождения с теорией остаются все еще очень больвпгми. Так, до сих пор нет никаких экспериментальных доказательств существования предсказываемого теорией резко выраженного минимума теплопроводности чистых металлов вблизи T k-i Q,2b. Трудно согласовать с теорией отношение элект-poHHoii теплопроводности при высокой и низкой температурах. Выше уже упоминалось, что теоретическая интерпретация измерений термо-э. д. с. при низких температурах встречает значительные трудности. С другой стороны, Зиман [102] недавно выступил с утверждением, что видоизменение теории, при котором количественно учитываются процессы переброса, приводит  [c.218]

Термоэлектрические эффекты. Результаты многих экспериментов показывают, что в цепп, состоящей из двух сверхпроводящих металлов, спаи которых поддерживаются при различных температурах, термоэлектрическая э. д. с. не возникает (Штейнер и Грассыан [203]). Это означает, что абсолютная термо-э. д. с. e=dE/dT равна нулю. Таким образом, абсолютная термо-э. д. с. нормальных металлов может быть получена путем измерения э. д. с. термопары, образованной металлом п сверхпроводником.  [c.668]

Термопары. Они являются наиболее распространенным средством измерения температуры. Термоэлектродвижущая сила (термо-э. д. с.) на зажимах термопары прямо пропорциональна разности температур горячего и холодного спаев и зависит от применяемых металлов и сплавов. Первые четыре термопары, приведенные в табл. 7-1, принадлежат к стандартным типам (ГОСТ 3044—77). Платино-платинородиевая термопара (в состав платинородия входит 90% платины и 10% родия) отличается химической стойкостью к окислительной среде, восстановительная среда разрушающе действует на платину. Составы других сплавов хромель содержит 90% N1 и 10% Сг алюмель — 1% 51, 2% А1, 43,5% Ре, 2% Мп, остальг ное — копель —56,6% Си и 43,5% N1. Наибольшее распространение при измерении температуры до 600 °С получила термопара хромель—копель типа ТХК, имеющая высокую термо-э. д. с. и малую инерционность. При измерении более высоких температур  [c.134]

Удлинительные провода для термопар из неблагородных металлов изготовляются из тех же материалов, которые применены для самой термопары для термопар из благородных металлов — из более дешевых металлов и сплавов, которые, однако, должны удовлетворять определенному требованию термоидентичности. Это требование состоит в том, чтобы удлинительные провода в диапазоне возможных температур свободных концов термопары обладали той же зависимостью термо-э. д. с. от разности температур, как и основная термопара. При этом условии включение удлинительных проводов не скажется на результатах измерения температуры.  [c.135]

Для -полупроводника, например для n-Si, с концентрацией донорной примеси Л д = 10 м при Т = ЗООК [х — 0,25 эВ. Подставляя это в (9.14), находим а 1 мВ/К, что примерно на 3 порядка выше, чем у металлов. Поэтому для цепи, состоящей из полупроводника и металла, долей, вносимой в термо-з. д. с. металлом, можно пренебречь и считать, что вся. термо-э. д. с. обусловлена полупроводником.  [c.260]


Бориды обладают ярко выраженными металлическими свойствами — малым электросопротивлением, высокой подвижностью носителей тока, малой величиной термо-э. д. с. их структура подобна структуре металлов. По Кислингу [19] эти соединения характеризуются прочными связями между атомами бора, причем стремление к образованию и усилению этих связей увеличивается с повышением содержания бора в боридных фазах.  [c.410]

Изготовленная термопара, как правило, тарируется по каким-либо эталонным приборам. /При тарировке термопар из неблагородных металлов организации, выполняющие такую работу, дают значения термо-э. д. с. термопары через каждые 100° С с точностью 0,01 мв, что для хромель-алюмелевой термопары соответствует 0,25° С. На первый взгляд кажется, что такая термопара, поставленная на экспериментальную установку, при учете результатов тарировки дает возможность измерять 102  [c.102]

Если термопара длительное время находится в воздухе при высокой температуре, то в горячем спае (и по всей длине проволоки) происходят процессы, приводящие к изменению химического состава металла (окисление, испарение какого-либо компонента из сплава, рост зерен и т. д.), В результате этого изменяется тарировоч-ная кривая термопары, причем одни термопары увеличивают свою термо-э. д. с. (например, хромель-алюмеле-вая), а другие уменьшают. Увеличение термо-э. д. с. хромель-алюмелевой термопары после 1000 ч нагрева соответствует изменению температуры при 640° С — на 1°С, при 871° С —на 3°С и при 982° С —на 4,5° С [Л. 3-1].  [c.104]


Смотреть страницы где упоминается термин Термо-э.д.с. металлов : [c.153]    [c.208]    [c.266]    [c.272]    [c.273]    [c.288]    [c.204]    [c.668]    [c.272]    [c.254]    [c.212]    [c.261]    [c.180]   
Физика низких температур (1956) -- [ c.153 , c.159 , c.162 , c.170 ]



ПОИСК



Лип термы

Новые способы обработки металлов и сплавов в твердом состоянии Термо-механическая обработка

Термит

Термия

Термо

Термо-электродвижущая сила проводниковых чистых металлов

Термометр сопротивления ( Электрическое сопротивление металлов как .термометрический параметр. Температурные области применения термо- j метров сопротивления



© 2025 Mash-xxl.info Реклама на сайте