Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Три режима окисления высокотемпературных материалов

Труднее объяснить часто наблюдаемые переходы между поведением I и II типов, вызванные изменениями температуры п приложенных напряжений. Наиболее вероятно, что такие переходы обусловлены многочисленными переменными параметрами, связанными с типом и морфологией оксида, механизмом ползучести и составом сплава. Например, можно ожидать, что толстые окалины, образующиеся при высоких температурах на стойких к окислению сплавах, особенно с высоким содержанием хрома или алюминия, будут повышать сопротивление ползучести на воздухе. Высказывались предположения, что изменение типа поведения с температурой отражает переход от высокотемпературного упрочнения, связанного с окалиной, к отрицательному воздействию адсорбции газов (особенно в вершинах трещин) при более низких температурах [23—27]. В то же время изменения температуры могут оказывать и косвенное влияние, изменяя преобладающий тип ползучести [1—6]. Это может быть причиной и переходов, вызванных изменением уровня проложенных напряжений [1-6]. Действительно, в состоянии очень высокого напряжения может отсутствовать стадия установившейся ползучести и тогда по существу мы наблюдаем влияние среды на режим ускоренной ползучести или на разрушение материала. В связи с этим следует заметить, что, к сожалению, большинство исследований коррозионной ползучести, а также и большинство технических испытаний на ползучесть [1-6] не сопровождаются непрерывной регистрацией деформации при определении времени до разрушения (длительной прочности).  [c.41]


Наряду с вольфрамом в промышленности, например, используют в ряде случаев тантал или сплав тантала с вольфрамом. В паяных конструкциях, представляющих собой смесительную головку, работающую при температуре >1000 °С, детали изготовляют из следующих материалов сплава состава 95 % (мае.) Та, остальное вольфрам реже из чистого тантала. Паяная конструкция смесительной головки состоит из массивного диска и тонкостенных трубок диаметром 0,8 мм при толщине стенок 0,15...0,2 мм. Для обеспечения работоспособности конструкции пайку необходимо осуществлять высокотемпературными припоями с определенным сочетанием в нем элементов. Эти ограничения связаны с возможной эрозией тонких стенок трубок. Для ее предотвращения рекомендуют использовать припои следующего состава ванадий + тантал + кремний + титан + + гафний + цирконий или тантал + алюминий + + железо + кремний + ванадий. Эти два припоя оптимальны и недефицитны по химическому составу. Пайка в вакууме обеспечивает герметичность паяных соединений без эрозии трубок и работоспособность смесительных головок. Для исключения окисления материала смесительной головки нецелесообразно пайку проводить в других защитных средах.  [c.479]


Смотреть страницы где упоминается термин Три режима окисления высокотемпературных материалов : [c.116]   
Смотреть главы в:

Тепловая защита  -> Три режима окисления высокотемпературных материалов



ПОИСК



Высокотемпературная ТЦО

Высокотемпературные материалы

Высокотемпературный режим

Материал Режимы

Окисление

Окисление высокотемпературное



© 2025 Mash-xxl.info Реклама на сайте