Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расчет псевдоожиженного слоя

Согласно [17], максимальное относительное отклонение экспериментальных данных от расчетных по корреляции. (2.15) составило 30%. Авторы рекомендуют ее для расчетов псевдоожижения угля, доломита, известняка, золы, железной руды и других материалов при следующих пределах характеристик системы диаметр частиц 0,05—2,87 мм плотность материала частиц 250—3900 кг/м диаметр колонны 0,025—0,305 м высота неподвижного слоя 0,1 —1,27 м давление в аппарате 0,1—7,0 МПа плотность газа 0,08—80 кг/м .  [c.38]


В расчетах конструировании высокотемпературных установок с псевдоожиженными слоями необходимо учитывать особенности их гидродинамики, связанные с температурным уровнем. Хотя, согласно [19], скорость начала псевдоожижения высокотемпературного слоя можно подсчитать по тем же формулам, что и для низкотемпературного, но анализ влияния температуры на величину Uq, а также на массовую скорость минимального псевдоожижения, безусловно, представляет интерес.  [c.39]

Интересно отметить, что на основании модели слоя как бесструктурной двухфазной подвижной системы, в которой частицы равномерно распределены по всему объему, в [36] получено уравнение для расчета скорости потока, необходимой при организации однородного псевдоожиженного слоя в широком диапазоне значений Re и Аг  [c.50]

В псевдоожиженном слое крупных частиц практически обоснованно предполагать, что температурный перепад между поверхностью теплообмена и ядром слоя сосредоточен в основном на первом от поверхности ряде частиц. Можно также считать, что от поверхности к частице тепло передается теплопроводностью через газовую линзу, образованную поверхностями, теплообмена и частицы и условно ограниченную цилиндрической поверхностью диаметром, равным с1ц (для упрощения расчетов, как и ранее, частицу принимаем в виде цилиндра диаметром йц, а газовую прослойку — в виде диска того же диаметра и по объему, равному линзе), т. е. рассматривается задача по прогреву пакета из двух пластин (газ и частица) толщиной б и R = d соответственно с одинаковой начальной температурой to поверхность одной стороны пакета мгновенно приобретает температуру /ст, которая поддерживается постоянной, температура поверхности противоположной стороны также постоянна в про-  [c.95]

Результаты, полученные в параграфе 4.4, позволяют исследовать радиационный обмен псевдоожиженного слоя с поверхностью. Цель данного параграфа — расчет основных характеристик и вывод соотношений, необходимых для описания этого процесса.  [c.168]

Таким образом, как при сравнении. результатов расчета с имеющимися экспериментальными данными, так и при дальнейшем использовании полученных зависимостей необходимо правильное определение излу-чательных свойств используемых частиц. Неточные значения степени черноты ер могут привести к значительным ошибкам при. расчете вклада переноса излучения в высокотемпературных теплообменных устройствах с псевдоожиженным слоем.  [c.175]

Представляет интерес сравнение полученных зависимостей с опытными данными. На рис. 4.16, а приведены результаты экспериментального исследования влияния температуры погруженной поверхности на эффективную степень черноты псевдоожиженного слоя для нескольких значений Гсл и диаметра частиц, а на рис. 4.16, б — эти же данные в координатах еэ/есл, (7 ст/Т сл) Как видно из рис. 4.16, б, даже при относительно низких температурах слоя мелких частиц экспериментальные точки хорошо ложатся на прямые линии. Согласно результатам расчета функции еэ(7 ст, Тел, бел) по модели стопы, отклонения от линейной зависимости появляются при достаточно большой разнице температур стенки и слоя (7 ст/7 сл) <0,1), что соответствует условию 7 ст/7 сл<0,5 или /ст<0,5 сл — 136,5 °С. Поскольку экспериментальные анные хорошо описываются формулой (4.48), можно сделать вывод, что предложенная модель позволяет достаточно точно описать процесс как радиационного, так и сложного  [c.180]


Обладая столь многими далеко не ординарными свойствами, кипящий слой, естественно, явился крепким орешком для исследователей. До сих пор не существует, к сожалению, единой стройной теории, описывающей его поведение. Пока приходится констатировать расчеты псевдоожиженных систем покоятся в основном на простых эмпирических формулах.  [c.76]

Дан критический обзор предложенных различными авторами конструктивных решений важнейших узлов установок с высокотемпературным псевдоожиженным слоем, приведены рекомендации по расчету и конструированию этих узлов.  [c.2]

Подчеркнем, что сами истинные значения а частиц в псевдоожиженном слое, конечно, не могут быть использованы в инженерных расчетах, так как различны и неизвестны поля температур около отдельных частиц. Но представление о истинных коэффициентах теплообмена и порядке величины их принципиально важно для приведения в систему всех достоверных опытных данных по меж-фазовому обмену и устранения кажущихся противоречий и аномалий .  [c.54]

Хотя для практических расчетов кондуктивной теплоотдачи псевдоожиженного слоя погруженным в него телам можно пользоваться прежними, приведенными в (Л. 141] соотношениями, например эмпирической формулой  [c.67]

Ориентировочным расчетом оценим этот предел при нагреве излучателя сжиганием топлива. Пусть даже. излучатель можно нагреть (не оплавляя его) до температуры, равной теоретической темпе рату-ре горения большинства топлив (примерно 2 000° С). Рассмотрим высокотемпературный нагрев слоя до 1 300° С. Тогда даже при неправдоподобно высоких угловом коэффициенте ф12=1 и приведенной степени черноты епр = 1 мы имели бы количество тепла, передаваемое на 1 сечения псевдоожиженного слоя,  [c.187]

Для расчета поступления сыпучего материала в псевдоожиженный слой через боковое отверстие в вертикальной тонкой стенке при попутном потоке газа мож-266  [c.266]

В итоге надежность работы самотечных перетоков в отношении достаточной производительности и отсутствия пробоя создается не только за счет отказа от неудачных конструкций, но связана также с требованием достаточной (по расчету) высоты перетока, а значит, и высоты каждой ступени многоступенчатого аппарата с псевдоожиженным слоем.  [c.272]

Кондуков Н. Б. и др.. Анализ поля скорости газа в псевдоожиженном слое и расчет профиля скорости в факеле, Химическая промышленность , 1967, № 6.  [c.283]

Физические параметры газа-теплоносителя в ориентировочных расчетах можно принимать соответствующими равновесной температуре. В псевдоожиженных слоях непрерывного действия, т. е. при непрерывных подаче и разгрузке материала из слоя, расчет теплообмена, казалось бы, должен осложниться различием во времени  [c.307]

Если поступающий материал сухой, то указанного условия обычно нельзя соблюсти и приходится устраивать несколько дополнительных псевдоожиженных слоев. В. М. Дементьев [Л. 891] предложил графоаналитический способ определения температуры j-ro слоя при заданном общем числе слоев п, разработав этот способ на примере расчета многослойной печи для обжига известняка. За недостатком места расчет не приводим. Подсчеты  [c.309]

Учитывая важность и актуальность вопросов теплообмена псевдоожиженных слоев крупных частиц с поверхностью в аппаратах под давлением, в ИТМО АН БССР был выполнен ряд экспериментов, которые необходимы также и для проверки надежности и достоверности расчетов, основанных на уравнении (3.90) и связанных с ним соотношений.  [c.103]

Весьма важно выяснить спектральную зависимость оптических свойств веществ, образующих дисперсную среду. Твердым материалам, обычно применяемым в технике псевдоожижения, свойственна слабая зависимость радиационных свойств от длины волны излучения [125]. Это позволяет при расчете 4HTaTjD поверхность частиц серой. Для газов, ожижающих дисперсный материал, характерна сильная селективность. Однако из-за малой оптической плотности она может сказаться лишь при значительной оптической толщине излучающего слоя газа. В псевдоожиженном слое средняя толщина газовых прослоек порядка диаметра частиц не более нескольких миллиметров), В этом случае можно не рассматривать излучение газа и считать его прозрачным [125].  [c.134]


Чтобы воспользоваться выражением (4.46), нужно знать функцию еэ(7 ст/ Тел, бел). Для ее расчета вернемся к результатам, полученным в подпараграфе 4.4.4. Применительно к условиям теплообмена неизотермиче-ского псевдоожиженного слоя с погруженной поверхностью плоский слой дисперсной среды соответствует неизотермичной зоне между-поверхностью теплообмена и ядром слоя. В эквивалентной этому слою модели стопы (см. рис. 4.7, а) О и N+1 ограничивающие поверхности представляют собой стенку теплообменника и ядро слоя с температурами Т ст и Тел- При фиксированной толщине неизотермичной зоны (число Л ), заданных степени черноты частиц и средней порозности слоя характеристики элементарного слоя стопы по-прежнему определяются формулами и уравнениями, приведенными в подпараграфе 4.4.2. Решение системы уравнений (4.38) позволяет найти возможное стационарное распределение температуры и величину лучистого потока по формуле (4.41). С помощью этого соотношения можно получить в явном виде функцию Еэ Тст, 7 сл, бел). Действительно, потоку, испускаемому псевдоожиженным слоем, соот-  [c.176]

Результаты расчета функции гэ(Тст. Тел, Всл) и срзЕнение их с экспериментальными данными позволяют по-новому оценить роль лучистого теплообмена при переносе энергии в псевдоожиженном слое. Как правило, считается, что радиационный теплообмен несуществен до температуры порядка 1000 °С, особенно для мелких частиц [180]. Такое заключение можно сделать исходя из сравнения потоков энергии, которые передаются от слоя к поверхности различными механизмами переноса [127, 50]. В то же время обработка экспериментальных данных (см. рис. 4.16) показывает, что при сравнительно низких температурах ( ст = 300°С, сл = = 600 °С) в слое мелких частиц (d = 0,32 мм) распределение температуры вблизи поверхности теплообмена опре-леляетгя радиационным переносом. Учитывая это, необходимо уточнить условия, при которых роль излучения в формировании распределения температуры вблизи поверхности будет существенна.  [c.183]

Не менее сложным остается вопрос о правильной оценке т е м-пературы дисперсного потока в качестве расчетной для лучистого теплообмена. В [Л. 130] для псевдоожиженного слоя предлагается выбирать температуру ядра, предполагая небольшим поперечный (по каналу) градиент температур частиц. В Л. 66] применяется среднеарифметическое значение входной и выходной температур, а в [Л. 201] приближенно решается обратная задача — расчет температуры нагрева дисперсного потока при конвективно-лучистом теплообмене. В этом случае на основе теплового баланса при предположении, что газ лучепрозрачен, режим стационарен, расчетная поверхность излучения Рст.  [c.271]

Брандт и Джонсон [70] измерили среднее вертикальное и радиальное напряжения на стенке трубы при прямоточном и противо-точном движении частиц псевдоожиженного слоя (со скоростью 1—30 см мин) относительно жидкости (вода) с помощью тензодатчиков и датчиков давления, расположенных на стенке трубы. Опыты проводились с частицами размерами 2—0,15 мм. Коэффициент трения зависит от скорости твердых частиц и их размера. Значительное внутреннее трение обнаружено в слое из стеклянны.х частиц, но не в слое из частиц смолы. Для противотока получено достаточно хорогаее соответствие с интегральным уравнением баланса сил в поперечном сечении слоя, а для прямотока это уравнение справедливо то.лько для частиц смолы диаметром 0,84—0,42 мм. Объемное содержание воды в слое не указано. На фиг. 9.23 приведены типичные результаты сравнения расчетов по уравнению (9.147) с экспериментальными данными для противо-точного движения. В этом случае уравнение (9.147) имеет вид  [c.430]

Хотя в большинстве приложений течение смесей является турбулентным или турбулентность непрерывной фазы вызывается частицами (например, в псевдоожиженном слое), были рассмотрены ламинарные течении, так как для них имеетсн точное математическое решение. Возможный метод расчета ламинарного потока можно распространить на турбулентный поток с минимальным логическим эмпиризмом, как в случае однофазной жидкости. В качестве примера здесь выполняется обобщение применительно к турбулентной смеси с испо.т1ьзоваю1ем числа э-тектровязкости (разд. 10.7).  [c.494]

Целый спектр вертикальных возмущений плотности всегда имеется в псевщоожиженцом слое как следствие внешних вибраций и неравномерности течения. Расчеты автора (Л. 499] показали, что рост возмущений в псевдоожиженных газом слоях ироисходит во много раз быстрее, чем в слоях, псевдоожиженных капельными жидкостями. Это объясняет обычную практическую однородность последних, если учесть естестве]Шое ограничение продолжительности роста каждого возмущения из-за конечной и довольно небольшой высоты слоев. Поэтому всякое случайное локальное уменьшение концентрации материала в какой-либо точке псевдоожиженного слоя не обязательно приводит к появлению пузыря или другого вида пустот. Отметим еще, что теория ограничивается пока рассмотрением начальной стадии роста возмущений и, как указывают авторы (Л. 376], не дает сведений о характере получившихся в конечном итоге макроскопических неоднородностей. Но и столь ограниченная теория  [c.9]

Если рассматривать различные подходы к 01писанию неоднородного псевдоожиженного слоя с точки зрения получения количественных зависимостей для расчета технологических аппаратов с псев-диожиженным слоем и расчета масштабных переходов, то можно разделить эти яодходы на две группы. К первой относятся модели, дающие макроскопическое описание псевдоожиженного слоя как целого, обладающего определенными характеристиками переноса газовой и твердой фаз. Применяя такие модели, как, например, модель Ван-Димтера, лишь условно или косвенно учитывают действительную структуру неоднородного слоя, наличие в нем пузырей я облаков замкнутой циркуляции и т. п. О структуре слоя и распределений продолжительности пребывания в нем газа, а также об обратном перемешивании газа ли материала косвенно судят по оценкам интенсивности переноса и т. п. параметрам, пользуясь вытекающими из условной модели корреляциями, коэффициенты в которых определяются из опытных данных.  [c.13]


Ко второй группе можно отнести модели, в которых пытаются описать физическую структуру неоднородного псевдоожиженного слоя, как, например, в теории пузырей , развивавшейся Дэвидсоном, Гаррисоном, Роу, и др. Подобный подход в принципе представляется даже более привлекательным, чем первый, если только не переоценивать точность и универсальность положенной в основу модели. Можно ожидать, что теория пузырей в сочетании с другой моделью, учитывающей особенности прирешеточной зоны слоя, будет перспективна для расчета аппаратов со свободным псевдоожижен-ным слоем с пузырями. Правда, свободный псевдоожиженный слой с пузырями сам не очень перспективен для проведения процессов, лимитируемых межфазовым обменом и в этих случаях, видимо, уступит место более однородным системам, таким, как тонкие или заторможенные (насадкой, пучками труб и т. п.) псевдоожиженные слои. Возможное. исключение — свободный слой крупных частиц.  [c.13]

Естественные (не инжектированные) пузыри в развитых псевдо-ожиженных слоях обнаруживают, как уже удалось установить, ряд особенностей. Так, в свободных псевдоожиженных слоях больших сечения и высоты пузыри могут разрастаться очень сильно в результате слияния и отбора газа из сплошной фазы. Об этом свидетельствуют, в частности, опыты [Л. Зв4] с лабораторным (диаметром 292 мм) псевдоожиженным слоем стеклянных шариков. Они показали, что из-за слияния на высоте менее 1 м число пузырей уменьшалось на три или более порядков, а средний объем остающихся пузырей возрастал соответственно более чем в тысячу раз. Таким образом, в моделях для расчета процессов контактирования твердой фазы с газом, например химического реагирования, если оно не завершается вблизи решетки, следовало бы учитывать быстрый рост пузырей, а не принимать их одинаковыми и равномерно распределенными по всему объему слоя. Автор (Л. 640] в своих опытах с псевдоожиженным слоем сечением 1,22X1,22 м и высотой до 2,74 м вообще не обнаружил каких-либо признаков достижения максимальной скорости подъема пузырей, а это значит и предельного их размера. Он наблюдал довольно быстрый подъем пузырей — на уровне 2,44 м от решетки в псевдоожиженном слое высотой 2,74 м, состоявшем из мелкого песка (шп,у = 2,5 см1сек), при N = 9 средняя скорость пузырей составила 2,44 м/сек. Если оценить средний диаметр пузыря на атом уровне по формуле (1-6), положив /(=1,2, то он будет равен О,<84 м.  [c.22]

Представляющие существенный интерес экспериментальные данные о перемешивании газа в лабораторных установках с псевдоожи-женным слоем можно найти в цикле работ Л. 599—602, 646—648], но в их трактовке, и применяемой терминологии не со всем можно согласиться. Так, в (Л. 648] содержатся противоречивые утверждения, что в условиях опытов вызванное пузырями изменение распределения времен пребывания газа в псевдоожиженном слое было пренебрежимо мало по сравнению с влиянием радиальной нера)Вномер-ности скоростей течения газа и что истинное обратное перемешивание газа отсутствовало. Авторы [Л. 648] провели опыты с псевдоожижен-ными осушенным воздухом свободными и заторможенными сетками слоями узких фракций стеклянных шариков средним диаметром 100, 250 и 500 мкм в колонке диаметром 135 мм на пористой решетке в узком диапазоне скоростей фильтрации. Четырехкратное изменение скорости осуществлялось при работе с частицами 110 мкм и только полуторакратное с частицами 500 мкм. Насколько можно судить по более поздней и более детальной работе Л. 646], в расчеты при обработке опытных данных было заложено довольно искусственное представление о конвективном продольном газообмене между двумя фазами (имея в виду пузыри и ограничивающую их сверху и снизу плотную фазу ), зависящем от разности скорости течения газа внутри пузыря и скорости подъема последнего.  [c.33]

В расчетах и конструировании высокотемпературных установок с псевдоожиженными слоями необходимо учитывать особенности их гидродинамики, связанные с температурным уровнем и неизотермич-ностью.  [c.37]

Остановимся на возможности применения известной теории пузырей к расчету межфазового обмена в псевдоожиженном слое. Она, очевидно, может объяс-58  [c.58]

Представляет интерес теплоотдача псевдоожиженных слоев, заторможенных насадками из сплошных элементов (шаров, цилиндров), в частности для расчета нагрева деталей, загруженных в Печь псевдоожиженного слоя навалом, и охлаждения тепловыделяющих элементов, выполненных в виде насадок. Данные о теплоотда-  [c.71]

Авторы [Л. 112] дали уравнения для расчета инфракрасного нагрева псевдоожижениого слоя от внешнего излучателя в сложном случае наличия перегрева верхней части слоя, но убедились экспериментально, что пе-  [c.185]

Важными и требующими гидравлического расчета конструктивными элементами установок с псевдоожи-женным слоем являются перетоки для передачи материала из вышележащих слоев в нижележащие (в многоступенчатых установках) или расположенные рядом. Многоступенчатые аппараты уже широко применяются и получат еще большее распространение в высокотемпературных установках с псевдоожиженными слоями, позволяя, как известно, достигать высокой тепловой экономичности за счет ступенчатого противотока в движении газа и материала. Этой же цели утилизации тепла газов, выходящих из высокотемпературных псевдоожи-женных слоев, имея ту же температуру, что и раскаленные твердые частицы, будут служить регенеративные теплообменники с циркулирующим твердым теплоносителем.  [c.256]

Коренберг Я, Г. и др.. Гидродинамический расчет решеток верхнего псевдоожиженного слоя печей ДКСМ, Химическая промышленность , 1968, № 6.  [c.283]

Сороко В. Е. н др., К расчету 1мнннмальн0и высоты над-слоевого пространства контактных аппаратов с псевдоожиженным слоем, Химическая промышленность , 1968, № 7.  [c.288]

Порядок графоаналитического расчета расширения псевдоожиженного слоя по Ричардсону и Заки таков [Л. 1118]. Подсчитав минимальную скорость псевдоожи-жения Шп.у и зная порозность слоя при пределе устойчивости /Лп.у, получим одну точку линии расширения в координатах т, w. Подсчитав Re при пределе устойчивости и при заданной скорости фильтрации, находим  [c.103]

Во всех случаях необходимо знать закономерности уноса частиц из псевдоожиженного слоя. Они очень сложны и до сих Пор недостаточно изучены. Не все выяснено относительно механизма уноса. Предложенные корреляции пригодны лишь для ор иентировочных расчетов. Дальнейшее изучение закономерностей уноса частиц из псевдоожиженного слоя даст возможность управлять этим процессом и работать в оптимальных условиях. Это одна из важнейших задач, связанных с внедрением техники псевдоожижения в различные отрасли производства.  [c.222]

И. М. Разумов и Л. И. Ларионов [Л. 928 и 1173] определяли унос из псевдоожиженного воздухом слоя при циркуляции (непрерывных подаче и отводе) материала. и без нее. Материалом служили. микросферический катализатор из естественных глин (диаметры частиц с =25- -400 и 25 160 жк объемный вес частиц > = = 1600 км1м ) и синтетический катализатор (rf = 50-f-400 мк Ym = 1 200 кг1м ). Диаметр слоя был равен 190 мм, а начальная высота 280 мм. Свободная высота лад слоем равнялась 1 900 мм. Живое сечение решетки было невелико (0,038 м ). Скорость фильтрации изменялась в пределах от 0,3 до 0,65 м1сек, а скорость циркуляции катализатора — от 70 до 150 кг/ч. И. М. Разумовым и Л. И. Ларионовой [Л. 1173] предложено уравнение для расчета уноса из псевдоожиженного слоя при высоте 232  [c.232]

В то же время интересы практики требуют создания уже сейчас хотя бы приближенных способов расчета устройств, использующих перенос тепла и вещества псевдоожиженным слоем. Такие способы могут быть даны, исходя из рассмотрения особенностей, отличающих явления переноса в псевдоожижениом слое и позволяющих сделать ряд упрощающих допущений.  [c.247]


Уместно подчеркнуть известную пользу накопления экспериментальных данных об эффективных коэффициентах теплообмена Оэф частиц в псевдоожиженном слое. При всей условности и несоответствии аэф и Ыцэф истинным а и Nu важно знать эффективные величины. Соотношение Ыи/Мнэф характеризует степень несовершенства газораспределения в теплообменнике и потенциальные возможности улучшения теплообмена. Что касается непосредственного применения аэф для расчета теплообменников с псевдоожиженным слоем, то сколько-нибудь точный расчет возможен лишь в условиях, подобных тем, при которых получено аэф(Нидф), включая условия начального газораспределения, статической электризации и т. п. В противном случае, например, зная лишь величину Re, следует считаться с возможностью расхождения в 2—3 раза между расчетными и будущими эксплуатационными значениями Оэф и прибегать к большим запасам в расчете.  [c.302]

В псевдоожиженном слое благодаря большой объемной концентрации сравнительно мелких частиц,несмотря на небольшие эффективные коэффициенты теплообмена, тепловое равновесие (выравнивание средних температур газа и материала) достигается уже на небольшом расстоянии от низа псевдоожиженного слоя. Так, по И. М. Федорову, даже для сравнительно крупных частиц (й э = 3 мм), при толщине слоя, соответствующей нагрузке на решетку 80 кГ/м , газы, выходящие из псевдоожиженного слоя, имеют температуру материала. В лабораторных опытах Ричардсона и Эрса [Л. 1002] с мелкими частицами 114- 550 мк) при непрерывных подаче и разгрузке материала из слоя тепловое равновесие достигалось на высоте 2,5 мм от решетки. Поэтому для псевдоожиженных слоев высотой более 20—30 диаметров частиц, по-видимому, нет необходимости в кинетическом расчете теплообмена материала со средой, а можно ограничиться статическим балансовым расчетом, принимая, что температура газов, выходящих из псевдоожиженного слоя, будет равна температуре материала в слое, если исключить случаи плохого, неполного псевдоожиження. Значительную высоту слоя в существующих конструкциях сушилок с псевдоожиженным слоем выбирают иногда с тем, чтобы легче избежать комкования материала и нарушения псевдоожижения, возникающего, если в каком-либо месте слоя скопляется только влажный подаваемый материал, склонный к слипанию. При тонком слое труднее избежать подобного скопления (особенно 306  [c.306]


Смотреть страницы где упоминается термин Расчет псевдоожиженного слоя : [c.100]    [c.160]    [c.170]    [c.172]    [c.185]    [c.14]    [c.163]    [c.112]    [c.289]   
Машиностроение Энциклопедия Т IV-12 (2004) -- [ c.334 , c.336 , c.479 ]



ПОИСК



Псевдоожижение

Псевдоожиженный слой



© 2025 Mash-xxl.info Реклама на сайте