Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Для нагрева преобразователей машинных

Подготовка процессов нагрева металла направлена на совершенствование шахтных и камерных печей и упорядочение графиков их работы, замену неэффективных машинных высокочастотных генераторов тиристорными преобразователями частоты тока. Режимы работы мощных металлургических и термических агрегатов должны обеспечить их длительную непрерывную работу, исключающую разогрев и пуск оборудования после простоев. Существенный эффект дают оптимизация режимов нанесения покрытий и корректировка электролитов. Испытательные стенды бесцельно диссипируют энергию в нагрузочных реостатах, которая может быть использована для нагрева технологических сред. До 5 % экономии электрической энергии достигается отключением в выходные дни заводских трансформаторов для исключения их холостого хода и автоматизацией включения конденсаторных батарей для компенсации реактивной мощности.  [c.86]


На рис. 28 показаны габаритные размеры установки ИН-250/10 для нагрева концов (длиной до 5 мм) заготовок, В нее входят машинный преобразователь частоты типа ОПЧ, нагреватель с двумя индукторами и шкафы силового и автоматического управления.  [c.275]

На рис. 60 изображена принципиальная схема установки для индукционного нагрева с машинным преобразователем и последовательность преобразования подводимой электроэнергии. Генератор преобразователя / приводится во вращение двигателем 2  [c.107]

Для контроля повторяемости режима нагрева необязательно измерять абсолютное значение мощности с полагающейся по классу приборов точностью. Необходим только индикатор мощности с достаточным числом делений и зеркальной шкалой. При определении возможной точности показаний прибора следует учитывать, что при фиксированной частоте машинных преобразователей, работающих на определенную нагрузку, не должны учитываться частотная и фазовая погрешность. Условия работы в отапливаемом помещении сужают пределы возможной температурной погрешности.  [c.48]

Индукционные установки (рис. 15.13) представляют собой индук-тор-соленоид из медной трубки 2, намотанной на огнеупорную трубу 3, в которую помещают заготовку 1. Соленоид подключают к генератору переменного тока 4. Для охлаждения соленоида внутри трубки пропускают холодную воду При прохождении через соленоид переменного тока в индукторе создается переменное электромагнитное поле, под действием которого в заготовке по закону электромагнитное индукции возникают вихревые токи, что ведет к выделению теплоты и нагреву заготовки до требуемой температуры. Частоту тока выбирают в зависимости от диаметра заготовок чем больше диаметр заготовки, тем меньше частота применяемого тока. Для питания индукционных нагревательных устройств служат машинные, ламповые и тиристорные преобразователи частоты тока.  [c.296]

Повышенные и высокие частоты получают с помощью машинных и ламповых генераторов. Для частот 500—10 ООО Гц применяют машинные генераторы, которые совместно с приводными двигателями называются преобразователями. Для индукционного нагрева промышленностью выпускаются машинные преобразователи различных типов (табл. 1).  [c.602]

По схеме управления станции выполняют с пуском электродвигателя машинного усилителя (ЭМУ), включением возбуждения генератора регулятором напряжения каждого поста, ручным и полуавтоматическим управлением циклами нагрева и охлаждения. Высокочастотные преобразователи используют более эффективно благодаря наличию Двух закалочных постов (табл. 21). Однако при этом холостой ход генератора составляет 35—40% от общего времени работы установки. Другим недостатком установок является то, что они не приспособлены для совместной работы с автоматизированными станками и приспособлениями.  [c.152]


Стабилизация индукционного нагрева в установках с машинными преобразователями производится стабилизацией напряжения на зажимах генератора. В этом случае для питания цепи возбуждения генератора используют схемы, имеющие обратную связь от напряжения на выходе генератора, с электромашинны-ми, магнитными или тиристорными возбудителями. При этом стабильность форм кривых изменения мощности и температуры нагрева гарантируется при полном сохранении параметров установки и настройки.  [c.158]

В отечественной промышленности используют также машинные преобразователи частоты для индукционного нагрева мощностью 250 и 500 кет при частоте 2500 и 8000 гц.  [c.355]

Источниками питания электрических нагревателей служат в основном сварочные трансформаторы, мощность которых подбирается в зависимости от величины изделия. При необходимости используют сдвоенные трансформаторы для параллельного питания нагревателей. Для индукционного нагрева кроме токов промышленной частоты, на которых работают сварочные трансформаторы, используются высокочастотные токи от машинных преобразователей повышенной частоты на 2450, 2960 и 8000 Гц и от тиристорных преобразователей на 2400 Гц.  [c.203]

Двухчастотный нагрев. Можно выделить два основных применения двухчастотного нагрева. В первом случае используется предварительный нагрев на частоте 50 Гц стальных заготовок до точки Кюри, после чего нагрев до требуемой температуры осуществляется на средней частоте. Применение промышленной частоты позволяет уменьшить стоимость установки и расход электроэнергии за счет отсутствия преобразователя частоты па начальной стадии нагрева. Этот способ целесообразен при создании установок большой мощности (свыше 1 МВт) для нагрева заготовок диаметром менее 180 мм, когда нагрев выше точки Кюри на частоте 50 1 ц неэффективен. Во втором случае падение интенсивности нагрева при потере заготовкой магнитных свойств используется для выравнивания температуры по длине изделий. Заготовки, имеющие переменную начальную температуру, например прутки, частично откованные на горизонтально-ковочной машине, Р1аг[)еваются в пе[)нодическом индукторе на частоте 50 Гц, после чего нагрев ведется на средней частоте в другом или в том же индукторе (в этом последнем случае обмотка индуктора имеет несколько слоев). При 50 Гц все слон вк.тючены последовательно, а на средней частоте к источнику подключается только внутренний слой. Для улучшения загрузки источников установки снабжаются двумя индукторами. Мощность установок 250—500 кВт по каждой из частот [41 I.  [c.205]

Отечественная промышленность выпускает сериями многие типы электротермических установок для нагрева заготовок перед обработкой давлением камерные (табл. 15) и карусельные (табл. 16) электропечи сопротивления оборудование для индукционного нагрева — машинные (табл. 17) и тиристорные преобразователи частоты (табл. 18), индукционные нагреватели (табл. 19) и нагревательные установки повышенных частот кузнечные нагреватели (табл. 20) одно-, двух- и четырехпозиционные установки электроконтактного нагрева (табл. 21—23) трансформаторы для нагрева сопротивлением (контактным способом) (табл. 24) электродно-со-ляиые нагревательные печи (табл. 25).  [c.275]

Более крупные печи, емкостью до нескольких сотен килограммов (а для стали — до нескольких тонн), работают на средних частотах 150—10 000 Гц с питанием от машинных или статических преобразователей частоты. Индукторы печей, питающихся от машинных генераторов, в большинстве случаев имеют автотрансформаторную схему включения (рис. 14-20, б) с двумя-тремя отводами. Отводы позволяют изменять напряжение на индукторе, поднимая его выше напряжения источника (но не выше номинального напряжения конденсаторов, подключенных параллельно индуктору, по избежание выхода их из строя). Переключением витков индуктора обеспечивается согласование нагрузки с генератором при изменяющихся но ходу нагрева эквивалентных электрических параметрах иечн.  [c.249]

Привод подачи для станков с ЧПУ. В качестве привода используют двигатели, представляющие собой управляемые от цифровых преобразователей синхронные или асинхронные машины. Бескол-лекторные синхронные (вентильные) двигатели для станков с ЧПУ изготовляют с постоянным магнитом на основе редкоземельных элементов и оснащают датчиками обратной связи и тормозами. Асинхронные двигатели применяют реже, чем синхронные. Привод движения подач характеризуется минимально возможными зазорами, малым временем разгона и торможения, небольшими силами трения, уменьшенным нагревом элементов привода, большим диапазоном регулирования. Обеспечение этих характеристик возможно благодаря применению шариковых и гидростатических винтовых передач, направляющих качения и гидростатических направляющих, беззазорных редукторов с короткими кинематическими цепями и т.д.  [c.275]


Стыковая сварка труб в котельном производстве выполняется машинами серии МВЧС. Машина содержит следующие основные элементы механизм для захвата и осадки свариваемых труб узел нагрева (индуктор, трансформатор и конденсаторы), установленный на подвижной каретке с электрическим приводом механизм вращения труб в процессе нагрева. В комплект машины входят шкафы управления и электромашинный преобразователь или инвертор мощностью 100 кВт, частотой 8... 10 кГц.  [c.245]

В нижней части рисунка показана последовательность преобразования подводимой энергии напряжением /л промышленной частоты 50 Гц в частоту 10 000 Гц в машинном преобразователе. Высокое напряжение С/1 с помощью понижающего трансформатора трансформируется в напряжение С/г, не превышающее нескольких десятков вольт. Контроль электрических параметров процесса нагрева детали осуществляется по приборам, схема включения которых изображена на рис. 61. В схему включаются пять приборов вольтметр В, амперметр А, киловаттметр КВ для измерения соответственно напряжения, тока и мощности генератора фазометр Ф для измерения коэффициента мощности на-  [c.108]

В 1967 г. в СССР коллективом авторов была разработана система автоматического регулирования режима применительно к сварке алюминиевых оболочек кабелей дальней связи. Авторами изобретения предложено в качестве косвенного параметра, определяющего качество сварного шва, принять интегральное излучение из очага расплавления (нагрева). Установлено, что суммирование излучения обычным фотопирометрическим датчиком дает положительный результат, особенно при сварке тонких изделий или изделий из цветных сплавов (алюминий, медь), для которых характерен небольшой объем распла1ва метал ла и сравнительно с полем датчика небольшое удаление точки схождения кромок от среднего положения. Сейчас все станы высокочастотной сварки кабельных оболочек и ряд трубоэлектросварочных оснащены этой системой регулирования. Система излучение—мощность, подводимая к индуктору (или контактам), — замкнутая и по существу стабилизирует геометрические размеры очага расплавления. Датчиком системы служит фотопирометр, с помощью которого посредством электромеханического обтюратора производится сравнение потоков излучения от визируемого нагретого тела и эталонной лампы накаливания. Регулирование мощности в установках с машинными преобразователями достигается изменением тока возбуждения с помощью тиристорного выпрямителя (возбудителя), а в ламповых генераторах — изменением анодного напряжения посредством управляемого выпрямителя.  [c.124]

Сущность индукционного нагрева заключается в том, что металлический образец, помещенный в пе ременное магнитное поле, нагревается за счет тепла, выделяющегося вследствие прохождения по нему индуктированных вихревых токов. Индукционный нагреватель (рис. 5.8.1) состоит из источника питания 1, индуктора 2 конденсаторной батареи 3, кон тактора 4, щита измерительны приборов 5 (вольтметр, ваттметр амперметр и прибор для измере ния osИсточникам питания являются высокочастот ные машинные генераторы ил1 Рис. 5.8.1. Схема индукционного тиристорные преобразовател нагревателя частоты. Индуктор представляв  [c.108]

На рис. 27.12 показана схема процесса ультразвуковой сварки. Основной узел машины для УЗ-сварки —магнито-стрикиионный преобразователь I, обмотка которого питается от генератора высокой частоты 6. С сердечником преобразователя связан волновод 2, который передает УЗ-колебания инструменту 3. Инструмент, прижимающий заготовки 4 к опоре 5, совершает колебания, амплитуда которых 20—40 мкм. Микроскопические возвратно-посту -пательные движения, передаваемые инструментом заготовкам, создают сдвиговые деформации в топких слоях контактирующих поверхностей. При этом разрушаются поверхностные пленки, поверхностные слои материала нагреваются. Под действием сжимающего усилия ироис-ходит пластическая деформация, в результате которой свариваемые поверхности сближаются до расстояния действия межатомных сил, и образуется сварное соедии.еиие.  [c.423]

Г оряча я штампо в к а корпуса гаек. Гайки штампуются из полос прямоугольного сечения. Перед штамповкой конец полосы нагревается до 1 ООО—1 100° на некоторой длине из расчета штамповки 8—15 гаечных корпусов за один нагрев. Т. к. при этом требуется равномерный нагрев значительной части полосы, а не конца штучной заготовки, как в случае штамповки болтов и заклепок, то нагревательные печи отличаются от печей, применяемых при штамповке болтов и заклепок, своей формой и размером загрузочных окон. Расход топлива в пересчете на уголь составляет до 50% по весу от выхода гаек. В главных салазках гаечяого пресса закрепляется матрица, имеющая отверстие, соответствующее изготовляемой гайке. Главные салазки получают движение от главного вала при помощи кулаков, действующих на задний торец салазок непосредственно или через преобразователь давления, при к-ром трение скольжения заменяется трением качения. В главных салазках ходят штемпельные салазки, на к-рых укреплен пустотелый штемпель, и пуансонные салазки, на к-рых укреплен пуансон для пробивки отверстий в гайках. Пуансон входит в отверстие штемпеля. Напротив подвижного штемпеля неподвижно установлен 2-й штемпель, также пустотелый, в отверстие которого входит 2-й пуансон, закрепленный в специальных салазках. Все салазки приводятся в движение от главного вала. Оси всех инструментов расположены на одной прямой. Процесс производства гаек представлен на схеме фиг. 11. Полоса 3 устанавливается концом у отверстия матрицы 6, причем нужное положение заготовки фиксируется подпоркой и упорами. При пуске машины укрепленная в салазках матрица в подается вперед и заходит на несколько мм на неподвижный штемпель 1 при этом кусок полосы отрезается и вводится в полость матрицы. Вместе с тем штемпель 4 устанавливают против штемпеля 1 на расстоянии, несколько большем высоты гайки. Непосредственно за этим пуансоны 2 и 5 быстро продвигаются навстречу друг другу на расстояние в несколько мм и грубо отпрессовывают гайку, вытесняя металл от середины к стенкам полости матрицы. После этого пуансон 2 отходит обратно, а за ним следует пуансон 6, пробивающий отверстие гайки и проталкивающий образовавшуюся шайбу (выдру) в отвер-  [c.443]


Электрическое устройство машины предназначено для получения необходимой программы нагрева (расплавления, оплавления) металла в зоне сварки. Рассмотрим типичную структурную схему электрического устройства машины для контактной сварки (рис. 27). Сварочный ток подводится к электродным головкам (электрододержателям, плитам, роликам, губкам) 1 по медным токоподводам 2 от сварочного трансформатора 3, которые образуют электрический контур машины. В машинах постоянного тока между трансформатором 5 и т коподводами 2 находятся блоки диодов 2. Напряжение сети, питающей машину, через автоматический выключатель 8 поступает на контактор 6 (устройство, включающее и выключающее ток, преобразователь частоты или зарядно-разрядное устройство конденсаторной машины с батареей конденсаторов). Импульсы напряжения от контактора 6 подаются через переключатель 5 ступеней вторичного напряжения (переключатель числа витков первичной обмотки трансформатора) на сварочный трансформатор 3.  [c.42]


Смотреть страницы где упоминается термин Для нагрева преобразователей машинных : [c.211]    [c.59]    [c.64]   
Справочник металлиста Том5 Изд3 (1978) -- [ c.0 ]



ПОИСК



Машинные преобразователи



© 2025 Mash-xxl.info Реклама на сайте