Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сталь нержавеющие, коррозионная

Мягкая сталь, нержавеющая (коррозионно-стойкая) сталь, алюминий  [c.153]

Стали нержавеющие. Коррозионные свойства в условиях работы изделий медоборудования.  [c.71]

Высоколегированные стали (нержавеющие, жаропрочные) обнаруживают очень хорошую стойкость во многих природных и химических средах. Коррозионная стойкость этих сталей определяется образованием тонкого защитного окисного слоя на их поверхности (пассивное состояние).  [c.45]


Некоторые узлы аппаратов, трубопроводы, детали машин, механизмов работают в агрессивных средах и должны иметь в них высокую коррозионную стойкость Хром является основным легирующим элементом, делающим сталь нержавеющей. При содержании в стали хрома больше 12,5% на ее поверхности образуется защитная оксидная пленка Сг О . В зависимости от состава нержавеющие стали подразделяются на два основных класса  [c.96]

Эффективно применение металлических покрытий для повышения стойкости нержавеющих сталей к коррозионному растрескиванию в хлорсодержащих средах.  [c.85]

По составу нержавеющие стали делятся на хромистые и хромоникелевые. Кроме основных элементов (углерода, хрома, никеля) нержавеющие стали могут быть дополнительно легированы молибденом, титаном, ниобием, медью, кремнием, которые вводят для повышения коррозионной стойкости, механических и технологических свойств стали. Нержавеющие стали бывают нескольких структурных классов ферритного, ферритно-мартенситного, мартенситного, аустенит-  [c.31]

Предел выносливости углеродистых, низко- и среднелегированных сталей снижается в 1,5—9 раз. Предел выносливости нержавеющей стали в коррозионной среде снижается незначительно (110%).  [c.249]

Уменьшение потенциала анодного нарушения пассивного состояния нержавеющей стали в хлоридных растворах под действием растягивающих напряжений может служить критерием относительной устойчивости стали к коррозионному растрескиванию [70]. Даже при нагрузках ниже предела текучести в разбавленном растворе хлорида натрия потенциал пробоя нержавеющей стали 18-8 и в нитратном растворе потенциал перепассивации мягкой углеродистой стали значительно уменьшились [71 ].  [c.80]

Судя по имеющимся данным [145,156-159], никель так же как и хром, оказывает благоприятное действие на стойкость нержавеющих сталей против коррозионного растрескивания.  [c.36]

Наряду с растворами электролитов коррозионное растрескивание аустенитных нержавеющих сталей наблюдается в воде, а также в паровой фазе (в сухом, перегретом и насыщенном паре). Поэтому в системах тепловых и атомных электростанций наблюдается коррозионное растрескивание элементов конструкций из нержавеющих аустенитных сталей. В авиационной практике происходят разрушения болтов из мартенситной стали вследствие коррозионного растрескивания во влажной атмосфере.  [c.44]


Легирование придает сталям повышенную коррозионную стойкость, улучшает их механические характеристики и т. д. Стали легируют хромом, никелем, молибденом, кремнием и другими элементами. Увеличивая содержание в стали хрома более 12%, никеля - до 10 % и молибдена до 3-5 %, т. е. превращая сталь в нержавеющую, при одновременной оптимальной ее термообработке, удается существенно повысить сопротивление стали коррозионной усталости [18, 71]. В то же время введение в малоуглеродистые стали только одного никеля снижает их сопротивление растрескиванию в хлоридных средах [8].  [c.119]

Влияние термообработки на стойкость аустенитной нержавеющей стали к коррозионному растрескиванию  [c.149]

Кроме указанных металлов, для изготовления защитных оболочек могут быть использованы также керамические и металлокерамические материалы, обладающие вполне удовлетворительной стойкостью в углекислом газе при высокой температуре. В качестве конструкционных материалов, из которых сооружается активная зона реактора, охлаждаемого угольной кислотой, чаще всего используются алюминий и его сплавы, графит и нержавеющие стали. Высокая коррозионная стойкость алюминия даже во влажном углекислом газе (рис. У-18) объясняется его хорошими пассивными свойствами и способностью образования на его поверхности достаточно прочных защитных пленок. Алюминий может быть использован в условиях работы реактора, охлаждаемого углекислым газом вплоть до температуры 300° С. Существенный недостаток его — взаимодействие с ураном.  [c.334]

Склонность хромоникелевых аустенитных сталей к коррозионному растрескиванию уменьшается с увеличением содержания в них никеля. Устойчивость резко повышается при содержании никеля около 20 %. Однако по некоторым данным даже при содержании никеля 35—40% аустенитные нержавеющие стали все еще могут подвергаться коррозионному растрескиванию.  [c.285]

Элементы теплообменной аппаратуры для работы в среде углекислого газа могут быть изготовлены из углеродистых, низколегированных и нержавеющих хромоникелевых сталей. Низколегированные стали в среде углекислого газа коррозионно устойчивы до температуры 300° С ири температуре 400° С и давлении 8 ата в сухом углекислом газе глубина коррозии за 20 лет составляет 0,5 мм при 550° С за этот же период образуется отслаивающаяся окалина, а при 600° С происходит сильное растрескивание этих сталей. Нержавеющие хромоникелевые стали коррозионно устойчивы до температуры 600° С.  [c.288]

ОСОБЕННОСТИ НЕРЖАВЕЮЩИХ СТАЛЕЙ 1. КОРРОЗИОННЫЕ ПРОЦЕССЫ  [c.9]

Сг, широко применяемый для легирования (в конструкционных сталях до 3% Сг), повышает твердость и прочность стали при одновременном незначительном понижении пластичности и вязкости. Присутствие Сг увеличивает прокаливаемость стали. Благодаря высокой износоустойчивости хромистой стали из нее изготовляют подшипники качения. Сг вводится в состав быстрорежущей стали. При содержании свыше 13% Сг сталь становится нержавеющей. Дальнейшее увеличение содержания Сг придает стали анти коррозионность при высоких температурах, а также магнитоустойчивость.  [c.155]

Стойкость к коррозионной кавитации зависит как от коррозионной стойкости, так и прочности металла. Самоупрочняющнеся стали обладают высокой стойкостью к коррозионной кавитации (табл. 8). Так, у хромомарганцовой стали марки 30Х10Г10 в результате механического воздействия происходит распад нестабильного аустенита и превращение его в мартенсит, что способствует высокой стойкости этой стали к коррозионной кавитации, в то время как стойкость хромоникелевой нержавеющей стали марки 1Х18Н9Л со структурой стабильного аустенита значительно меньше.  [c.18]

Бористые нержавеющие стали являются коррозионно-стойкими в кипящем теплоносителе. Скорость коррозии стали Х18Н9Р  [c.280]

Стойкость дисперсионнотвердеющих нержавеющих сталей к коррозионному растрескиванию изменяется в зависимости от термообработки, необходимой для достижения требуемого уровня прочности. В результате обработки на твердый раствор и старения образуются выделения богатой медью вторичной фазы, повышающие не только твердость, но и коррозионную стойкость стали в морских условиях.  [c.68]


В табл. 22—24 приведены данные, характеризующие склонность аустенито-ферритных дисперсиоинотвердеющих нержавеющих сталей к коррозионному растрескиванию. Режимы термообработки исследованных сплавов представлены в табл. 25. Необходимо заметить, что образцы, испытывавшиеся на стенде, расположенном в 25 м от средней линии прилива, находились в гораздо более агрессивных условиях, чем образцы на стенде, удаленном от океана на 250 м. Поэтому данные  [c.71]

Атмосфера влажного воздуха, возникающая в результате испарения водного раствора Na I (температура 40°С, относительная влажность 97-99 %) и не вызывающая заметных коррозионных поражений нержа-вещих сталей в ненапряженном состоянии, обусловливает коррозионноусталостное разрушение углеродистых, низколегированных и нержавеющих сталей [113]. Коррозионно-усталостному разрушению в указанных условиях подвергаются также такие коррозионностойкие материалы, как титановые сплавы.  [c.103]

К- Эделеану [111,82 111,92] указывает, что особенно склонна к коррозионному растрескиванию нержавеющая сталь, содержащая квазимартенсит . В том случае, когда весь аустенит превратился в мартенсит, разность в объемах фаз, а соответственно и механические напряжения, отсутствуют. Сталь в этом случае не подвергается коррозионному растрескиванию [111,82 111,94]. К- Эделеану [111,92] считает, что если превращение аустенита в мартенсит прошло не полностью, то зерна аустенита в углах коррозионной трещины находятся в весьма напряженном состоянии, а это значительно усиливает дальнейшее развитие коррозионного растрескивания. По мнению X. И. Роха [111,97], сталь, содержащая 19% хрома и 7,5% никеля, тем более склонна к коррозионному растрескиванию, чем глубже она после закалки при температуре 1050° С лежит в у-области. Эта же сталь в отожженном состоянии содержит 4% феррита и после холодной обработки не растрескивается в растворе хлористого кальция. По мнению автора, в этом случае феррит, являясь анодом, защищает от разрушения зерна аустенита. Вместе с тем X. И. Роха [111,97] указывает, что уже небольшое количество выделившейся ферритной составляющей может существенным образом изменить напряженное состояние в металле.Это обстоятельство видимо, и является решающим для чувствительности стали к коррозионному растрескиванию. Большинство авторов [111,83 111,92 II1,94 111,69] указывает, что чисто аустенитные стали более склонны к коррозионному растрескиванию, чем ферритные и мартенситные. Однако наличие в структуре стали феррита не всегда обеспечивает полный иммунитет к коррозионному растрескиванию [111,99]. Если же в ее структуре имеется б-фаза, время испытаний до разрушения образца увеличивается [111,82 111,100].  [c.146]

Учитывая изложенное, следует считать, что все факторы увеличивающие структурную устойчивость аустенитной нержавеющей стали, улучшают и ее стойкость к коррозионному растрескиванию. Одним из таких факторов является увеличение концентрации никеля в нержавеющей стали. По данным К- Эделеану [111,22], увеличение концентрации никеля до 14% в стали, легированной 17—18% хрома, несколько замедляет появление коррозионного растрескивания образцов из этой стали, испытываемых в кипящем растворе 42-процентного хлористого магния при растягивающем напряжении 28 кПмм (рис. 111-30). С дальнейшим увеличением концентрации никеля до 20% резко повышается устойчивость стали к коррозионному растрескиванию. Аналогичные данные для стали с концентрацией 18% хрома и 2,5% молибдена были получены С. Бери [111,96]. В сталях 18-8 с увеличением концентрации никеля до 20 и 30% время до разрушения образцов в кипящем хлористом магнии увеличивается соответственно в 10 и 100 раз [111,101]. Однако и при концентрации никеля в стали 35—40%, по данным X. Р. Копсона [111,102] и Ф. Л. Жаке [111,103], аустенитная нержавеющая сталь все же может подвергаться коррозионному растрескиванию. По мне-  [c.146]

Термическая обработка существенным образом влияет на склонность аустенитных нержавеющих сталей к коррозионному растрескиванию. Так, холоднообработанная сталь с концентрацией 18,56% хрома, 10,6% никеля и 0,05% углерода разрушается при испытаниях в хлористом магнии за 18 час. Та же сталь, отожженная после холодной обработки, не разрушалась в течение всего периода испытаний. Та же картина наблюдалась и у стали с 18,5% хрома, 8,8% никеля и 0,07% углерода. Обжатие в этом случае достигало 30— 35% [111,93]. Аустенитная нержавеющая сталь, выдержанная после холодной обработки при температуре 700° С в течение 4 час, оказалась в значительной степени склонной к коррозионному растрескиванию. После выдержки ее при той же температуре, но в течение 18 час, трещины появлялись только на отдельных образцах. Склонность к коррозионному растрескиванию у этого вида стали полностью устранялась при выдержке ее при температуре 800° С в течение 15мин [III,92].М.Шейл [111,94] испытывал влияние режима термообработки на коррозионное растрескивание стали с 18,7% хрома, 8,7% никеля в кипящем растворе, насыщенном хлористым магнием. Результаты испытаний приведены в табл. 111-16.  [c.148]

По мнению К Эделеану [111,119], аустенитная нержавеющая сталь не подвергается коррозионному растрескиванию в чистом паре. Однако в случае переменного увлажнения и высыхания, даже при наличии воды очень высокой чистоты, на поверхности, особенно теплопередающей, могут накапливаться соли, а это может привести к коррозионному растрескиванию стали [111,120]. Особенно велика опасность коррозионного растрескивания в зоне кипения [111,121]. С. Бреннер [111,122] указывает, что аустенитные нержавеющие стали подвергаются коррозионному растрескиванию и в паре низкого давления. Температура перегрева пара может существенным образом влиять на появление растрескивания в аустенитной нержавеющей стали. При умеренном перегреве (порядка 25 7°С) парачасть воды испаряется, а ионы хлора концентрируются в оставшихся каплях воды. При этом, естественно, концентрация их возрастает [111,107], а следовательно, процесс коррозионного растрескивания интенсифицируется. Коррозионное растрескивание аустенитной нержавеющей стали может возникать при 50° С. Так, в этом случае при наличии в воде 50 мг л ионов хлора сталь 316 разрушалась через полтора года [111,88]. Ф. В. Девис [111,117] приводит случай разрушения аустенитной нержавеющей стали в растворе, содержащем 13,5 мг1л ионов хлора через 90 час. В работе Ж- П. Хуго [111,118] указывается, что образцы из стали 316 подвергались коррозионному растрескиванию при испытаниях в растворах с концентрацией 0,24—0,38 мг л ионов хлора. Испытания проводились в автоклавах, содержание кислорода не контролировалось. Коррозионное растре-  [c.156]


Как уже указывалось выше, явление коррозионного растрес- кивания аустенитных нержавеющих сталей в растворах хлоридов рассматривается двояко во-первых, с точки зрения воздействия ионов хлора и напряжений на защитные свойства пассивной пленки, образующейся на поверхности металла, и во-вторых, с точки зрения распада аустенита под воздействием напряжений и активного растворения образующейся при этом а-фазы в растворах, содержащих ионы хлора. Оставаясь в рамках первого направления, трудно объяснить интенсификацию процесса коррозионного растрескивания при наличии в растворе кислорода. Ведь с точки зрения пленочной теории пассивности присутствие кислорода в растворе должно способствовать пассивации металла и увеличению защитных свойств, пленки. С этих же позиций непонятно отсутствие влияния механических напряжений и хлоридов на скорость катодного процесса ионизации кислорода. Если ионы хлора и напряжение в металле способствуют разрушению пассивной пленки, то оба эти фактора должны изменять скорость и анодного, и катодного процессов. Ниже будет показано, что напряжения не влияют на скорость катодного процесса в растворах хлоридов и других анионов. Об отсутствии влияния напряжения на скорость катодного процесса на сталях 18-8 и 18-10 в кипящем растворе насыщенного хлористого магния указывали Т. П. Хор и Ж- Г. Хайнес [111,133]. Сточки зрения пленочной теории, увеличение стойкости сталей к коррозионному растрескиванию-трудно увязать с ростом содержания никеля в них и практически невозможно объяснить, почему аустенитная нержавеющая сталь . практически одинаковая по составу (особенно по хрому и никелю), но в силу тех или иных причин становится магнитной, является значительно более стойкой к коррозионному растрескиванию, нежели та же сталь, не обладающая магнитными свойствами [111,12  [c.159]

Все перечисленные выше экспериментальные факты легко объясняются с точки зрения превращения аустенита под действием механических напряжений. Одним из сильных аргументов в пользу пленочной теории считается влияние обработки поверхности на стойкость аустенитной стали к коррозионному растрескиванию. Считают даже, что этот факт невозможно объяснить лишь с точки зрения теории нестабильности аустенита. Следует при этом напомнить, что характер обработки может существенным образом влиять на фазовый состав поверхностных слоев металла. Так, по данным С. Ямагухи [111,135], после механической полировки поверхностный слой аустенитной нержавеющей стали 18-8становится ферромагнитным. Кристаллы поверхностных слоев её имеют объемноцентриро-ванную кубическую решетку с параметром 2,86 Л. Аналогичный эффект наблюдается и у стали 18-8, легированной дополнительно 3% молибдена. После электрополировки поверхность стали теряет ферромагнитные свойства. При увеличении количества феррита в аустенитной нержавеющей стали до определенной величины (об этом будет сказано далее) стойкость стали к коррозионному растрескиванию существенным образом меняется. Таким образом, и этот экспериментальный факт может быть объяснен с точки зрения теории нестабильности аустенита.  [c.160]

Выше уже говорилось, что при определенном содержании феррита в аустенитных сталях они становятся более стойкими к коррозионному растрескиванию. Х.Х. Улиг [111,134] отмечает, что аустенитные нержавеющие стали, близкие по своему химическому составу, существенным образом отличаются друг от друга по стойкости к коррозионному растрескиванию вследствие различия в структуре. Так, слабо магнитные и магнитные стали 18-8 не разрушались в процессе 200-часовых испытаний, в то время как немагнитные образцы разрушились за несколько часов. Именно с этой точки зрения следует рассмотреть влияние легирования кремнием на стойкость сталей к коррозионному растрескиванию. Е. Е. Денхард [111,101] указывает, что стойкость к коррозионному растрескиванию у стали 18-12, легированной 4% кремния, улучшается. Сталь 18-8, легированная 2% кремния, немагнитна и разрушается за 15 час. Та же сталь, легированная 1,1—2,7% кремния, слабо магнитна, т. е., очевидно, содержит а-фазу в количестве 5—10%, и не разрушалась по прошествии 250 час испытаний [111,134]. Высокая стойкость к коррозионному растрескиванию стали 18-8С небольшой концентрацией С (менее 0,002—0,004%) и азота (менее0,002—0,004%) [111,134] объясняется тем, что уменьшение содержания этих аустенитообразующих элементов делает сталь двухфазной — с содержанием а-фазы до 10—15% [И 1,123]. С другой стороны, сталь 19-20 с концентрацией менее 0,01% азота и углерода полностью аустенитна и достаточно стойка против коррозионного растрескивания. Та же сталь, но с концентрацией 0,2% углерода, тоже стойка к растрескиванию, но увеличение азота до 0,05% приводит к появлению трещин. Полагают, что в данном случае концентраторами напряжений были нитриды [111,142]. Сталь 18-8, закаленная при температуре 196° С, двухфазна и стойка к растрескиванию, в то время как без этой обработки она разрушалась за 6 час. Увеличение хрома в стали с 8 до 25% при концентрации 20% никеля делает сталь значительно более склонной к коррозионному растрескиванию вследствие уменьшения стабильности аустенита [111,134]. Учитывая изложенное выше, влияние легирующих элементов на коррозионное растрескивание нержавеющей стали  [c.165]

Большинство источников указывает на то, что полуферритные и ферритные хромистые стали практически не подвержены коррозионному растрескиванию в растворах хлоридов. Хромистые же стали, имеющие мартенситную структуру, подвержены коррозии под напряжением. Между коррозионным растрескиванием аустенитных и мартенситных сталей имеется определенное различие. В аустенитных сталях растрескивание интенсифицируется при анодной поляризации, а в мартенситных — катодной. Последнее обстоятельство позво-ляетпредположить, что растрескивание мартенситных сталей связано а водородной хрупкостью. При наличии катодной поляризации увеличивается скорость выделения водорода и интенсифицируется коррозионное растрескивание мартенситных сталей. Контакт с более электроотрицательным металлом, например алюминием, также ускоряет процесс растрескивания мартенситных сталей. При растрескивании стали 410 (12—13% хрома) разрушение распространяется вдоль неотпущенного мартенсита по граням прежних аустенитных зерен. Отпуск при температуре 635° С снижает склонность стали к коррозионному растрескиванию [111,156]. Д. С. Поль [111,36] считает, что ферритные и мартенситные стали с низкой твердостью не склонны к коррозионному растрескиванию под напряжением в воде высокой частоты при температуре до 300° С. Мартенситные же нержавеющие стали, закаленные до твердости Ядс= 30, коррозионному растрескиванию в этих условиях подвержены. Хромистые стали, так же как и малолегированные и аустенитные нержавеющие стали.  [c.177]

Из сталей наилучшей коррозионной стойкостью в этой среде обладают низколегированные хромомолибденовые, кремнемолибденовые и молибденовые. Хромоникелевые нержавеющие стали имеют худшие антикоррозионные свойства в связи с избирательным поглощением никеля, особенно при температурах более 500° С. Их длительная прочность заметно понижается при омыва-нии сплавом свинец—висмут [10].  [c.297]


Х18Н9Т. Поскольку эта сталь нержавеющая, абсолютный износ в воздушной среде в интервале температур до 550° мало отличался от износа в среде аргона. Незначительное увеличение скорости износа отмечено при температуре 600°, что-объясняется появлением окисных пленок, так как коррозионное влияние воздуха интенсифицирует износ при температуре 600°.  [c.105]

За счет высокой коррозионной стойкости детали арматуры из титана (корпуса, втулки, штоки, сальники, золотники) противостоят коррозии в 15—26 раз дольше, чем нержавеющие стали (Х18Н9Т). Коррозионные свойства сплава АТ-3 испытаны во многих средах, в том числе в среде, содержащей раствор серной кислоты при 350 °С. В течение длительного времени при испытаниях в условиях радиации на образцах сплава не было признаков коррозии, а также коррозионного растрескивания под напряжением. Высокой коррозионной стойкостью сплав обладает в едком натре, в водном растворе аммиака, в азотной, хлорной, уксусной кислотах и средах, содержащих серу при 50 °С.  [c.74]

По комплексу физико-механических свойств титановые сплавы являются универсальным конструкционным материалом, сочетая нехладноломкость алюминия и аустенитных сталей, высокую коррозионную стойкость лучших медноникелевых сплавов и нержавеющих сталей, немагнитность, прочность и удельную прочность более высокие, чем у большинства конструкционных материалов. Поэтому потенциально титановые сплавы эффективны как авиационные и космические материалы, материалы для химической промышленности, судостроения и др. вплоть до материалов тары для хранения ядохимикатов и удобрений в сельском хозяйстве.  [c.230]


Смотреть страницы где упоминается термин Сталь нержавеющие, коррозионная : [c.105]    [c.454]    [c.73]    [c.110]    [c.90]    [c.259]    [c.110]    [c.141]    [c.147]    [c.148]    [c.163]    [c.164]    [c.166]   
Кислородная коррозия оборудования химических производств (1985) -- [ c.0 ]



ПОИСК



504—505 ( ЭЛЛ) нержавеющие

Андреева, Л. Я. Гурвич. Коррозионные и электрохимические свойства и методы защиты азотированных нержавеющих сталей

Батраков, Л. Я- Гурвич, Ю. А. Смирнова, Л. А. Филимонова Метод испытания коррозионной стойкости нержавеющих сталей, работающих в условиях нагрева и действия влаги

Влияние напряжений и отпуска на коррозионное растрескивание нержавеющих сталей

Воробьева М. А., Клинов И. Я. Коррозионные и электрохимические свойства нержавеющих сталей в растворах уксусной кислоты

Испытания на коррозионную стойкость нержавеющих сталей в азотной кислоте

КОРРОЗИОННО-ЭЛЕКТРОХИМИЧЕСКОЕ ПОВЕДЕНИЕ И АНОДНАЯ ЗАЩИТА УГЛЕРОДИСТОЙ, НЕРЖАВЕЮЩИХ СТАЛЕЙ, ТИТАНА В РАЗЛИЧНЫХ ЭЛЕКТРОПРОВОДЯЩИХ СРЕДАХ

Колотыркин, в. М. Княжева свойства карбидных фаз и коррозионная стойкость нержавеющих сталей Физические свойства карбидов переходных металлов

Коррозионная стойкость и виды коррозии нержавеющих сталей

Коррозионная стойкость нержавеющих и жаропрочных сталей и сплавов

Коррозионная стойкость нержавеющих сталей

Коррозионная стойкость нержавеющих сталей с марганКоррозионная стойкость хромомарганцевых сталей

Коррозионная стойкость хромистых нержавеющих сталей

Коррозионно-электрохимическое поведение и анодная защита нержавеющих сталей в растворах роданидов

Коррозионно-электрохимическое поведение и анодная защита нержавеющих сталей в хлорид-нитратных растворах

Коррозионно-электрохимическое поведение нержавеющих сталей и анодная защита в пульпе сложных удобрений

Коррозионное разрушение углеродистой и нержавеющих сталей под напряжением при контролируемом потенциале

Коррозионное растрескивание аустенитных нержавеющих сталей Максимова)

Коррозионное растрескивание нержавеющих сталей под напряжением

Коррозионное растрескивание под напряжением и водородное растрескивание нержавеющих сталей

Основные вопросы коррозионной стойкости сталей и сплаПрирода пассивности нержавеющих сталей

Повышение коррозионной стойкости нержавеющих сталей, титана, циркония, хрома при легировании их катодными присадками

Сталь нержавеющая

Усталость коррозионная нержавеющих сталей

Электрохимические свойства некоторых карбидов переходных металлов и коррозионная стойкость нержавеющих сталей



© 2025 Mash-xxl.info Реклама на сайте