Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расчет поля индуктивных скоростей

Прямолинейный отрезок вихря является наиболее удобным элементом для построения системы вихрей несущего винта при расчетах неоднородного поля индуктивных скоростей. Ломаной ли- нией из таких элементов можно моделировать спиральные концевые вихревые жгуты. Отрезки прямолинейных вихрей позволяют также описывать продольную и поперечную завихренности, сходящие с внутренней части лопасти, причем для сглаживания особенностей поля скоростей целесообразно радиус ядра брать большим.  [c.493]


НИТЬ расчет индуктивных скоростей при небольшом увеличении времени счета. Результаты расчетов аэродинамических нагрузок при переменном поле индуктивных скоростей представлены на рис. 13.8—13.14. Рассматривался трехлопастный шарнирный винт с коэффициентом заполнения о = 0,1. Градиент крутки 0кр составлял —8°, а массовая характеристика лопасти у была равна 8. В разд. 5.6 рассмотрены нагрузки этого же винта, определенные при постоянной индуктивной скорости. Все графики  [c.659]

Метод расчета неоднородного поля индуктивных скоростей винта вертолета и высших гармоник нагрузок развит в работах Миллера [М.123, М.124] ). При постоянной или линейно изменяющейся по радиусу винта скорости протекания расчетные гармоники аэродинамических нагрузок убывают как ц" (где п — номер гармоники), тогда как по результатам измерений в определенных условиях полета (переходные режимы, посадка с подрывом) доминируют пятая и шестая гармоники нагрузки. Такие гармоники вызывают увеличение шума винта и вибраций вертолета. Основной причиной их, возникновения являются скорости, индуцируемые системой вихрей несущего винта. По-  [c.663]

В работе [Р.68] рассмотрен метод расчета неоднородного поля индуктивных скоростей, в котором пелена моделировалась недеформируемой сеткой вихревых отрезков. На начальной стадии расчета маховое движение полагалось известным из эксперимента и вычислялись лишь аэродинамические нагрузки. Единственной неизвестной была циркуляция присоединенного вихря лопасти, которая определялась в конечном числе точек диска винта на различных азимутах и радиусах. С помощью теории тонкого профиля эта циркуляция выражалась через углы атаки, определяемые индуктивными скоростями и движением лопасти. Индуктивная скорость вычислялась по формуле Био — Савара и зависела от интенсивности элементов вихревого следа, определяемой в свою очередь циркуляцией присоединенного вихря лопасти. Таким образом, задача сводилась к решению системы линейных алгебраических уравнений для циркуляции присоединенного вихря в ряде точек диска винта. Поскольку таких точек требуется от 100 до 200, число уравнений в этой системе оказывается весьма значительным.  [c.666]

В работе [D.16] развит метод расчета переменного поля индуктивных скоростей одиночного винта и двух винтов вертолета продольной схемы. Модель пелены представлена в виде большого количества продольных вихрей конечной интенсивности, каждый из которых образован ломаной из прямолинейных отрезков. Поперечные вихри игнорируются. Пелена вихрей считается не-деформируемой. Расчеты этим методом [D.17] обнаружили существенное влияние неоднородности поля индуктивных скоростей на аэродинамические характеристики винта, связанное со значительным изменением углов атаки сечений лопасти.  [c.668]


Важный особый случай представляют задачи аэроупругости для установившихся режимов полета, включающие определение летно-технических характеристик, аэродинамических нагрузок, нагрузок на лопасти и систему управления и вибраций. Поскольку в этом случае р-ешение является периодическим и движения лопастей идентичны, непосредственное вычисление выходных параметров в функции времени неприемлемо. Следовательно, итерационная процедура анализа должна быть изменена для улучшения эффективности вычислений. Основным принципом ее изменения является сведение к минимуму количества и продолжительности связанных с интенсивными вычислениями шагов, требуемых для получения устойчивого решения. В качестве примера рассмотрим задачу определения неравномерного поля индуктивных скоростей. При прямом подходе индуктивный поток определяется на каждом шаге вычислений до тех пор, пока аэродинамические нагрузки и маховое движение лопастей не сходятся к периодическому решению. Однако индуктивный поток не очень чувствителен к небольшим изменениям нагрузки и движения несущего винта. Таким образом, расчет индуктивного потока может быть отделен от расчета периодических аэродинамических нагрузок и махового движения лопастей.  [c.690]

Индуктивные скорости на диске винта или вблизи него обычно можно найти только численно (исключая несколько особых точек). При равномерной нагрузке по вихревой теории получают те же результаты, что и по импульсной. В частности, с увеличением скорости полета результаты вихревой теории должны приближаться к тем, которые дает теория крыла. Вследствие упрощенности схемы следа дисковые вихревые теории в настоящее время могут быть полезны главным образом для общего описания поля скоростей вокруг винта и, в частности, индуктивных скоростей. Подробные расчеты индуктивных скоростей лучше делать с учетом неравномерности скоростей протекания, используя представление следа дискретными вихрями - (см. гл. 13).  [c.142]

Поскольку наиболее важную роль в процессе образования поля скоростей и нагрузок на лопасти играют концевые вихри, определение их формы представляется наиболее важной частью задачи о форме системы вихрей несущего винта. Определение формы вихрей, сходящих с внутренней части лопасти, может быть выполнено с меньшей точностью, поскольку влияние этих вихрей на винт менее существенно. Чаще всего в расчетных или экспериментальных исследованиях системы вихрей несущего винта обращают внимание лишь на концевые вихри. При описании концевого вихря ломаной из ряда прямолинейных отрезков обычно достаточно указать расположение угловых точек ломаной. Это должно быть сделано для каждого азимутального положения лопасти, при котором проводится расчет индуктивных скоростей.  [c.672]

Однако в действительности при переходе на позиции ослабления поля из-за индуктивности обмоток тяговых двигателей процессы происходят с некоторой задержкой во времени и без резких бросков тока II силы тяги. Чтобы учесть эти условия, Правилами тяговых расчетов для поездной работы предусмотрен переход на позиции ослабления поля по условным наклонным штриховым линиям. В этом случае кривые тяговых характеристик дополняют таблицей, в которой указывают координаты точек перехода (по скорости, току и силе тяги). Такие данные для электровоза ВЛ8 приведены в табл. 7.  [c.270]

Займемся дальнейшим развитием, нестационарной теории профиля с тем, чтобы приспособить ее к анализу обтекания вращающейся лопасти. Хотя основы теории уже излагались в предыдущих разделах, приложение ее к лопасти несущего винта требует учета целого ряда дополнительных факторов. Применение схемы несущей линии разделяет задачу расчета нестационарных аэродинамических нагрузок при пространственном обтекании на две части внутреннюю, в которой исследуются аэродинамические характеристики профиля, и внешнюю, состоящую из расчета индуктивных скоростей, создаваемых в сечении лопасти вихревым следом винта. Что касается внутренней задачи, то при стационарном обтекании плоского профиля аэродинамические нагрузки могут быть получены из эксперимента и представлены в виде табулированных зависимостей их от угла атаки и числа Маха. При нестационарном досрывном обтекании применимы результаты теории тонкого профиля. Решение внешней задачи затруднено тем, что система вихрей винта имеет весьма сложную конфигурацию. За каждой из вращающихся лопастей тянутся взаимодействующие винтовые вихревые поверхности, деформирующиеся в поле создаваемых ими индуктивных скоростей с возникновением областей сильной завихренности в виде концевых вихревых жгутов. Аналитическое определение индуктивной скорости на лопасти без весьма существенных упрощений модели вихревого следа (например, представления винта активным диском) оказывается невозможным. На практике неоднородное поле индуктивных скоростей определяют численными методами, подробно обсуждаемыми в гл. 13. Ввиду сказанного ниже не предполагается отыскивать зависимость между индуктивной скоростью и нагрузкой путем введения функции уменьшения подъемной силы. Напротив, сами индуктивные скорости являются фактором, учитываемым явно в нестационарной теории профиля. Для построения схемы несущей линии желательно, чтобы вычисление индуктивных скоростей производилось лишь в одной точке по хорде. Проведенное выше исследование обтекания профиля на основе схемы несущей линии указывает способ, который позволяет аппроксимировать нестационарные нагрузки с достаточно полным отображением влияния пелены вихрей. Применительно к лопасти достаточно рассмотреть лишь часть пелены, расположенную вблизи ее задней кромки. При построении нестационарной теории обтекания вращающейся лопасти надлежит учесть влияние обратного обтекания и радиального течения. Теоретические нагрузки должны быть скорректированы таким образом, чтобы они отражали влияние  [c.480]


Таким образом, расчет неоднородного поля KOpo xefi протекания основывается на определении скоростей, индуцируемых дискретным элементом вихревой пелены. Ниже дается вывод формул для скоростей, индуцируемых вихревой линией или поверхностью. Прежде всего будет рассмотрена прямолинейная вихревая нить, что позволит изучить ряд общих черт поля индуцируемых вихрями скоростей. Вихревая нитв конечной интенсивности представляет собой предельный случай, когда поле вихрей конечной суммарной интенсивности сконцентрировано в трубке бесконечно малого поперечного сечения. Вблизи вихревой нити поле скоростей имеет особенность, причем скорости стремятся к бвсконечности обратно пропорционально расстоянию до нити. В реальной жидкости вследствие влияния вязкости эта особенность отсутствует, ибо диффузия вихрей превращает нить в трубку малого, но конечного поперечного сечения, называемую ядром вихря. Скорость принимает максимальные значения на некотором расстоянии от оси вихревой трубки, которое можно принять в качестве радиуса ее ядра. Поскольку лопасти несущего винта часто проходят очень близко к концевым вихрям от впереди идущих лопастей, ядро вихря играет важную роль в создании индуктивных скоростей на лопастях несущего винта, и существование такого ядра следует учитывать при описании распределения вызываемой винтом завихренности. Радиус ядра концевого вихря составляет примерно 10% длины хорды лопасти. Экспериментальных данных о размерах ядра концевого вихря очень мало, особенно для случая вращающейся лопасти.  [c.489]

В теории винта для описания вихревого. следа используется ряд моделей. Модель следа, все элементы которого переносятся с одной и той же средней скоростью, называется линейной или жесткой. Если входящая в состав скорости переноса каждого элемента индуктивная скорость берется равной ее значению в точке диска винта в момент схода этого элемента, то получающийся след называется полу-жестким. Возможно, что после того, как угол ф превысит 2n/N (т. е. элемент вихря приблизится к следующей лопасти), было бы точнее вводить в состав скорости переноса среднюю по диску винта индуктивную скорость. Если каждый элемент вихря переносится с местной скоростью потока, в которую входит индуктивная скорость, вызываемая самим следом, то след деформируется (относительно идеализированного линейного следа), и тогда его называют свободным или нежестким. Деформация следа может быть определена как расчетом, так и экспериментально. При использовании в расчетах формы вихрей, взятой из эксперимента, часто говорят, что модель вихрей имеет предписанную форму.  [c.673]

Основная проблема при использовании модели свободнога следа состоит в нахождении достаточно точных и эффективных вычислительных алгоритмов. В принципе процедура вычислений достаточно проста. В каждый момент времени производится вычисление индуктивной скорости в месте нахождения каждога элемента пелены вихрей. Это делается путем суммирования скоростей, индуцируемых каждым элементом (как и при расчете переменного поля скоростей в точках диска винта). Затем посредством численного интегрирования определяется положение элементов вихрей в следующий момент времени. Начала расчета соответствует предельному случаю винта, мгновенно  [c.674]

Вследствие сложной формы поверхности лопастей и вихревых поверхностей теорию несущей поверхности практически можно использовать, только рассматривая конечные элементы. В простейшем случае поверхности лоиастей и вихревые пелены представляют вихревыми решетками. При этом способ расчета должен быть сходен с описанным выше способом расчета неравномерного поля скоростей протекания, но число точек, в которых нужно вычислять индуктивную скорость, на несколько порядков превышает число точек на поверхности лопасти. Даже без учета свободного переноса вихрей в следе расчет нагрузок несущего винта по теории несущей поверхности потребует  [c.687]

Распределение углов атаки по диску винта и, следовательно, проявление срыва зависят от неравномерности поля скоростей протекания (см. примеры в разд. 13.2). Учет такой неравномерности позволяет более полно исследовать картину обтекания лопасти при больших нагружениях. Обычно индуктивные скорости в концевой части отступающей лопасти больше средней по диску винта, что ограничивает углы атаки на конце лопасти. Поэтому зона срыва сдвигается в сторону комля и переходит в третий квадрант, особенно в случае малозакрученных лопастей. Неравномерность скоростей протекания сказывается также в увеличении максимальных углов атаки на диске и увеличении скорости изменения а перед наступлением срыва. Поэтому мнение о том, что 1,270 — это максимальный угол атаки сечений при полете вперед, не вполне справедлив. Области срыва, полученные расчетом при постоянной скорости протекания, плохо согласуются с данными экспериментальных исследований. Однако важность учета неравномерности скоростей протекания при детальном изучении аэродинамики винта не обесценивает критериев срыва, основанных на элементарных, полученных при постоянной скорости протекания параметрах типа ai,270- Такие критерии основаны на связи между значе-  [c.797]


Смотреть страницы где упоминается термин Расчет поля индуктивных скоростей : [c.654]    [c.431]    [c.655]    [c.667]    [c.681]    [c.682]    [c.27]    [c.671]   
Теория вертолета (1983) -- [ c.663 ]



ПОИСК



6441-А индуктивные

Индуктивность

Поле скоростей

Поля скоростей

Расчет Скорости

Расчет поля скорости

Скорость индуктивная



© 2025 Mash-xxl.info Реклама на сайте