Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потеря слоев

Для уменьшения тепловых потерь слоя радиацией над ним был устроен экран в виде графитовой плитки с отверстиями для ввода центрального электрода и выхода газов.  [c.169]

Первый метод предусматривает различные методы неразъемного соединения, как, например, пайка и т. п. Для пайки применяются разные припои и флюсы, причем иногда перед напайкой пластинки из минералокерамики подвергаются металлизации, например, слоем меди с титаном или железа и никеля и др. Во избежание потери слоя металлизации во время нагрева под напайку необходимо, чтобы температура плавления этого слоя была выше температуры плавления припоя . Лучшие результаты дает напайка пластинки в закрытый паз по сравнению с открытым.  [c.189]


Для уменьшения потерь теплоты многие сооружения, агрегаты, коммуникации приходится теплоизолировать, покрывая их стенки слоем материала с малой теплопроводностью [А.< <0,2 Вт/(м-К) . Такие материалы называются теплоизоляторами.  [c.101]

В крупных энергетических агрегатах такой метод снижения температуры горения неэкономичен, ибо лишний воздух, уходя из агрегата, уносит и теплоту, затраченную на его нагрев (возрастают потери с уходящ,ими газами — см. далее), Поэтому в топках с кипяш,им слоем крупных котлоагрегатов размеш,ают трубы 9 я /2 с циркулирующим в них рабочим телом (водой или паром), воспринимающим необходимое количество теплоты. Интенсивное омывание этих труб частицами обеспечивает высокий коэффициент теплоотдачи от слоя к трубам  [c.144]

Составляющие тепловых потерь указаны в формуле (18.5). Из них потери теплоты от химической неполноты сгорания <Эз и от механического недожога Q< для современных котельных агрегатов невелики, что связано с высоким совершенством горелочных устройств (см. гл. 17). Несколько больше потери в окружающую среду через ограждение (стены) котла, но и они обычно не превышают 2,5 %, поскольку плотные относительно холодные экраны топки и изоляционный слой обмуровки как топки, так и газоходов достаточно надежно защищает котел от теплопотерь в окружающую среду. Наибольшие теплопотери (5 % и более) составляют потери с уходящими газами, поскольку они удаляются из котла с температурой ПО—150°С (см. 18.1), что намного превышает температуру окружающей среды.  [c.216]

Главным фактором, определяющим потерю энергии при течении жидкости через шаровой слой, он считал форму пространства между шарами. На рис. 2.1 показаны модели ячейки  [c.42]

Для исключения влияния лучистого теплообмена опыты проводились при температурах газа меньше 300° С. Для ликвидации тепловых потерь стенки сосуда подогревались компенсационной электрической спиралью до температуры, равной температуре газа на выходе в шаровой слой.  [c.67]

Твердые частицы, содержащие оставшийся после возгонки углерод и отделенные от использованного доломита, поступают в топку-газификатор, которая работает также по принципу псевдоожиженного слоя. Состоящий из этих частиц слой продувается воздухом и паром и разделяется на две зоны. В нижней протекает в основном реакция горения с образованием СО2 и Н2О и повышением температуры до 1150°С. Частицы золы при такой температуре становятся липкими, агломерируют и оседают на дно аппарата, откуда их можно уже удалить. Таким путем обеспечиваются минимальные потери углерода. Циркулирующие в слое частицы переносят тепло в верхнюю зону слоя, где СО2 и Н2 реагируют с углеродом, образуя генераторный газ.  [c.29]


Сведения о гидравлическом сопротивлении неподвижного слоя важны как исходные для оценки потерь давления в противоточно и перекрестно продуваемых движущихся системах. По неподвижному слою имеется обширная литература, в частности рассмотренная в [Л. 6, 124, 130, 138, 184]. Несмотря на множество расчетных рекомендаций, будем их различать по тому, как они отражают роль вязкостных и инерционных сил потока в слое, определяющих характер режима фильтрации.  [c.282]

Для расчета потерь давления в движущемся слое анализ имеющихся сведений позволяет рекомендовать следующее  [c.284]

При неравномерном движении частиц время (поверхность) теплообмена и путь (высота камеры) можно определить по формулам, полученным в гл. 2, 3. Там же приведены данные, необходимые для расчета камер газовзвеси с тормозящими элементами. По данным гл. 4 возможен расчет потерь давления в теплообменниках газо-взвесь . Для теплообменника типа слой при известном диаметре камеры D и объемной концентрации (плотности укладки) р  [c.363]

Некоторые результаты разработки и испытания высокотемпературного теплообменника перекрестного тока приведены в [Л. 91]. Схема перекрестного движения газов и насадки в теплообменных камерах была выбрана не только потому, что интенсивность процесса при перекрестной продувке слоя может быть выще, чем при противоточной (гл. 10), но и по конструктивным причинам упрощаются подводящие и отводящие воздуховоды, облегчается их компоновка с теплообменником, заметно уменьшаются потери тепла в окружающую среду, что особенно важно при высоких температурах и пр. Схема экспериментальной установки представлена на рис. 11-7. Взаимное горизонтальное движение газов и воздуха в теплообменнике может осуществляться по схеме прямотока либо противотока. Греющие газы — продукты сгорания керосина.  [c.378]

Однако с увеличением времени нагрева увеличивается окисление поверхности металла, так как при высоких температурах металл активнее химически взаимодействует с кислородом воздуха. В результате на поверхности, например, стальной заготовки образуется окалина—слой, состояний из оксидов железа РеаОз, Fe ,0,j, FeO. Кроме потерь металла с окалиной, последняя, вдавливаясь в поверхность заготовки при деформировании, вызывает необходимость увеличения припусков на механическую обработку. Окалина увеличивает износ деформирующего инструмента, так как ее твердость значительно больше твердости горячего металла.  [c.61]

На начальной стадии окисления чистого металла образуется компактная однослойная окалина, плотно прилегающая к окисляющемуся металлу. Этот процесс описывается во времени параболическим законом, что определяется диффузионным механизмом процесса. По мере протекания процесса толщина слоя окалины достигает определенной критической величины, при которой потеря металла на границе металл—окалина не компенсируется более пластической деформацией окалины.  [c.74]

Приведенные формулы не учитывают некоторое различие сопротивлений цилиндрического слоя для истечения и всасывания. В первом случае поток расширяется по мере увеличения диаметра цилиндрического слоя в направлении движения, т. е. имеет место диффузорный эффект, при котором градиент скорости вблизи твердых поверхностей зерен уменьшается. Поэтому потери давления получаются меньше, чем в слое такой же толщины, но без расширения. Во втором случае поток суживается, т. е. имеет место конфузорный эффект, при котором градиент скорости у твердых поверхностей зерен увеличивается и потери получаются больше, чем в таком же слое без сужения.  [c.308]

Вычислить тепловые потери через 1 м стенки топочной камеры и температуру в плоскости соприкосновения слоев.  [c.8]

Тепловые потери =1090 Вт/м . Температура в плоскости соприкосновения слоев с2=828°С.  [c.8]

Вычислить температуру в плоскости соприкосновения слоев и толщину войлочного слоя при условии, что тепловые потери через  [c.9]

Определить потери теплоты через изоляцию с 1 м трубопровода п температуру на границе соприкосновения слоев изоляции, если первый слой изоляции, накладываемый на поверхность трубы, выполнен из материала с коэффициентом теплопроводности %2 = = 0,06 Вт/(м-°С), а второй слой —из материала с коэффициентом теплопроводности Яз=0,12 Вт/(м-°С).  [c.14]


Тепловые потери с 1 м трубопровода < i = 89,5 Вт/м. Температура на границе соприкосновения слоев изоляции сз = 97°С.  [c.14]

Как изменятся тепловые потери с 1 м трубопровода, рассмотренного в задаче 1-24, если слон изоляции поменять местами, т. е. слой с большим коэффициентом теплопроводности наложить непосредственно на поверхность трубы Все другие условия оставить без изменений.  [c.14]

Потери теплоты увеличатся и составят < (= 105,5 Вт/м. Температура на границе соприкосновения слоев изоляции <сз = 159°С (см. рис. 1- 0).  [c.14]

Как изменятся тепловые потери qi, Вт/м, и температура внешней поверхности изоляции t i в условиях задачи 5-65, если толщину слоя изоляции увеличить в 2 раза, а все остальные условия сохранить без изменений  [c.106]

Найти тепловые потери q, Вт/м , с поверхности теплообменника, если после наложения слоя тепловой изоляции толщиной 50 мм температура на внешней поверхности изоляции установилась = = 50 С, а температура в помещении осталась прежней, т. е.  [c.149]

Задача VI—2. Определить, пренебрегая потерями напора, начальную скорость истечения жидкости из сосуда, заполненного слоями воды и масла (относительная плотность б = 0,8) одинаковой высоты Л = 1 м.  [c.133]

Пример 23-4. Плоская стальная стенка с = 50 вт1м-град и толщиной 6i = 0,02 м изолирована от тепловых потерь слоем асбестового картона с 2 = 0,15 вш1м-град толщиной ба = 0,2 ж и слоем пробки с 1з = 0,045 вт1м-град толщиной 63 = 0,1 м. Определить, какой толщины необходимо взять слой пенобетона с Я, = = 0,08 вт м-град вместо асбеста и пробки, чтобы теплоизоляционные свойства стенки остались без изменения. Эквивалентный коэф-  [c.370]

Остановимся иа изучении свойств пленок, состоятцих ш диэлектрических слоев, в которых отсутствуют потери. Слои, имеющие бесконечную протяженность, являются плоскими и взаимно параллельными, каждый из пих однороден и изотропен. Пусть  [c.341]

При оценке потерь слой ионизированного газа и проходящую волну можно считать плоскими Тогда для расчета коз ф фи ц и ей топ затухания а и фазы р можио пользоваться формудами (5 6).  [c.270]

Химическая инертность гелия и возможность высокой степени его очистки от примесей в контуре опытных реакторов ВГР позволяют использовать в качестве оболочек твэлов не только нержавеющие стали, но и ванадий, пироуглерод, карбид кремния и другие керамические материалы [21]. По-видимому, одно из основных преимуществ применения гелия — это возможность использовать в качестве топлива карбиды урана и плутония, что сулит существенное увеличение коэффициента воспроизводства по сравнению с окисным топливом. Нулевая активация гелия, отсутствие существенного замедления им быстрых нейтронов при прохождении через активную зону реактора БГР, а также успешное решение задачи удержания продуктов деления в микротвэлах с керамическими защитными слоями при больших значениях глубины выгорания и возможность непосредственного охлаждения микротвэлов газовым теплоносителем — все эти положительные факторы позволяют реактору БГР конкурировать с реактором-размножителем БН. Основной недостаток гелиевого теплоносителя по сравнению с натриевым — трудности отвода тепла остаточного тепловыделения в аварийных ситуациях при потере герметичности основным  [c.31]

Использовалась обычная методика проведения эксперимента и обработки опытных данных. Расход определялся по нормальной диафрагме (шайбе), перепад давления в рабочем участке измерялся дифманометром ДТ-50 и образцовыми манометрами класса 0,35, нагрев воздуха в рабочем участке — дифференциальными хромель-копелевыми термопарами и переносным потенциометром ПП-П класса 0,2. Потеря давления в шаровом слое подсчитывалась с учетом сопротивления трубы (Дртр), определенного без шаровых элементов. В расчете коэффициента сопротивления слоя по зависимости (2.1) принималось среднее значение плотности воздуха, подсчитанное через средние температуру и давление в рабочем участке. Полученные коэффициенты сопротивления приведены в табл. 3 4.  [c.61]

При этом следствием появления Фтх является, как отмечалось выше, увеличение общих сил трения на границах потока, что в продуваемых системах (например, газовзвеси) проявляется в дополнительной потере давления (Арт), а в гравитационных (непродуваемых) системах— в возникновении поперечного градиента скорости слоя. Статические давления компонентов потока р и рт в общем случае нельзя принимать равными. Они отличаются не только на капиллярное давление при большой дисперсности частиц [Л. 279], но и имеют разное приложение в случае связанного движения плотного слоя частиц gradpT также учитывает внутреннее напряжение в материале частицы, которое может возникнуть из-за механических или термических причин. Проекция равнодействующей сил инерции компонентов на ось х равна изменению количества движения элемента Ах Ау Az зо времени по оси х  [c.38]

Рассмотрим использованный выше в порядке первого приближения прием расчленения общего коэффициента сопротивления на слагаемые. Оценка только по об дает лишь количественный результат, поскольку этот коэффициент является интегральным. Поэтому стремление дифференцировать сложный шроцеюс привело к коэффициентам I, п, которые, однако, в определенной мере условны. Сложность заключается (В том, что все составляющие 1об не являются независимыми друг от друга величинами. Действительно, сопротивление трения чистого газа будет при наличии частиц и прочих равных условиях иным, чем при их отсутствии в связи с изменением обстановки в пристенном слое. По этой же причине т может иметь место и в тех случаях, когда движение твердых частиц не приводит к их сухому трению и ударам о стенки (Фт О), а лишь вызовет внутренние силы межкомпонентных взаимодействий. Вот почему при выбранном методе расчленения об коэффициент т(Арт) учитывает все (за исключением Ара) дополнительные потери давления, которые появляются из-за наличия частиц в потоке. Оценка общего коэффициента сопротивления дисперсного потока по зависимости типа об=ф1 [Л. 283] пригодна лишь для горизонтальных потоков, где п=0. Согласно (Л. 283] <р= 1 +1,6р 10иви +(1+2р)]. Нетрудно показать, что такая обработка опытных данных приводит в итоге также к расчленению об на составляющие. Действительно,  [c.125]


При этом скорость СЛОЯ, обеспечивающую движение в режиме плотного слоя, следует проверить по критическому числу Фруда Ргкр (гл. 9), а потерю давления можно рассчитывать по данным, приведенным в гл. 9. Диаметры теплообменных камер зависят от выбора величины скорости газа. Для камер типа слой эта величина в основном ограничивается допустимым аэродинамическим сопротивлением. Для прямоточных аппаратов типа газовзвесь скорость газа ограничена условиями беззавальной работы, а в противоточных — коэффициентом аэродинамического торможения А = у/ув, который должен быть из-за опасности уноса частиц меньше еди-  [c.363]

В Чехословакии под руководством И. Шнеллера ведутся работы по созданию подобных теплообменников типа противоточно движущийся слой [Л. 328]. При наличии больших перепадов давления (отношение давления в камерах 2 5) разработан и предварительно испытан при t = A2T теплообменник с периодически работающими перепускными органами в виде поршневых механических затворов, между которыми имеется дополнительная емкость. Установка полностью автоматизирована. Насадка — керамические шарики (98% АЬОз) диаметром 10 мм. Обнаружено, что потери воздуха из-за неплотностей в запорных органах не превышали 1,5%. Поскольку количество насадки, выходящей за один цикл из теплообменника, составляет не более /з ее содержания в камере, то предполагается возможность расчета количества передаваемого тепла по зависимости, полученной для регенератора непрерывного действия. В работе рассматривается отношение rip к теоретической эффективности Tip.o- Последняя была определена с использованием формулы  [c.376]

Системы кольцевых диффузоров [75, 76] показаны на рис. 10.24. Здесь же приведены измеренные за ними (на расстоянии 20 мм от слоя) профили скорости. Эти диффузоры не обеспечивают даже удовлетворительной степени равномерности потока. Из этого следует, что все эти способы раздачи потока могут быть использованы только как вспомогательные распределительные устройства. Для полного выравнивания потока вместе с иимп должны быть применены другие выравнивающие устройства, Б первую очередь подробно рассмотренные плоские решетки, которые отличаются простотой и компактностью. При этом следует отметить ошибочность утверждения, что такие решетки создают слишком большое дополнительное сопротивление движению потока в аппарате. На самом деле это не так. Дело в том, что распределительные решетки устанавливают в сечении с наибольшей площадью, т. е. с минимальными скоростями, и если они подобраны правильно (по расчету), то, несмотря даже на значительный их коэффициент сопротивления, абсолютное значение потерь давления получается по сравнению с общими потерями давления в аппарате небольшое.  [c.284]

Расчет гидравлического сопротивления аппаратов цилиндрической формы [45]. Удельные потери, т. е. потери давления на единицу толщины слоевого (пористого) цилиндра при данном расходе жидкости меняются с толщиной стенок цилиндра. При истечении жидкости наружу скорость в направлении истечения надает вместе с увеличением поверхности (диаметра) цилиндрического слоя, а следовательно, удельные потери у.мень-шаются. При всасывании имеет место обратное явление. Если использовать известные формулы для коэффициентов сопротивления плоских слоев, то это обстоятельство должно быть учтено. Сделаем соответствующие пересчеты.  [c.306]

Какой должна быть твощииа диатомитового слоя, чтобы потери в окружающую среду не превышали 750 Вт/м  [c.13]

Определить тепловые потери с 1 м трубопровода, рассмотренного в задаче 1-34, если трубопровод покрыт слоем изоляции толщиной 6i=60 мм (рис. 1-14). Коэффициент теплопроводности изоляции Я = 0,15 Вт/(м-°С). Коэффициент теплоотдачи от поверхности изоляции к окружающему воздуху 05=8 Вт/(м2. °С). Все остальные условия остаются такими же, как в задаче 1-34, Вычислить также температуры на внешней поверхности трубы и на внешней поверхности изодяцип t s-  [c.17]

При обычной максимальной рабочей температуре для вакуумных ленточных ламп 1850 °С давление паров вольфрама чрезвычайно низко и им можно пренебречь. Однако для ламп, предназначенных для работы при более высокой температуре, в оболочку вводится инертный газ, например аргон. Присутствие газа понижает потери вольфрама на испарение. Большинство испарившихся атомов вольфрама не успевает продиффун-дировать через граничный слой газа и уйти с конвекционным потоком, а затем после столкновений с атомами газа вновь конденсируется на поверхности вольфрама. Очень большие потери вольфрама могут быть обусловлены процессом, известным как эффект водного цикла . Потери в этом процессе являются наиболее существенными и могут приводить к большим дрейфам градуировки при высоких температурах. Принято считать, что эффект водного цикла имеет следующий механизм. Водяной  [c.353]


Смотреть страницы где упоминается термин Потеря слоев : [c.257]    [c.169]    [c.146]    [c.77]    [c.274]    [c.284]    [c.285]    [c.286]    [c.377]    [c.136]    [c.19]    [c.247]   
Справочник по композиционным материалам Книга 2 (1988) -- [ c.320 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте