Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жаростойкие Сплавы магния

Жаростойкость сплавов магния с Мп, Zn, А1 выше, чем нелегированного магния. Улучшает жаростойкость маг-  [c.407]

Методика определения диаметров отверстий под нарезание резьбы метрической по ГОСТ 9150-59 для металлов повышенной вязкости (стали и сплавы высоколегированные, коррозионностойкие, жаропрочные, жаростойкие, сплавы магния, сплавы алюминиевые, латуни) дана в приложении к МН 5384-64.  [c.20]


Обработка отверстий в деталях из материалов повышенной вязкости сплавов магния — по ГОСТ 804 — 72 алюминиевых — по ГОСТ 4784 — 74 латуни — по ГОСТ 15527 — 70 титановых сплавов, сталей и сплавов высоколегированных, коррозионно-стойких, жаростойких, жаропрочных (на никелевой основе)-по ГОСТ 5632-72 и ГОСТ 20072-74.  [c.18]

Пайка магниевых сплавов. Магний является самым легким (плотность 1,8—1,4 г/см ) и дешевым конструкционным материалом. Низкая плотность сочетается с высоким пределом прочности (260—460 МПа), жаропрочностью и жаростойкостью (до 450— 500 °С). Высокая прочность и устойчивость при динамических нагрузках позволяют широко использовать эти сплавы в различных конструкциях.  [c.267]

В качестве материалов матриц при изготовлении МКМ применяют освоенные промышленностью металлы и сплавы, а также сплавы, создаваемые специально для получения МКМ. В зависимости от требуемых эксплуатационных свойств применяют следующие материалы легкие металлы и сплавы на основе алюминия и магния сплавы на основе титана, меди жаропрочные и жаростойкие сплавы на основе железа, никеля и кобальта тугоплавкие сплавы на основе вольфрама, молибдена и ниобия.  [c.464]

К группе материалов повышенной вязкости относят сплавы магния по ГОСТ 804-99 алюминиевые сплавы по ГОСТ 4784-97 латуни по ГОСТ 15527-2004 титановые сплавы стали и сплавы высоколегированные, коррозионно-стойкие, жаростойкие, жаропрочные (на никелевой основе) по ГОСТ 5632-72.  [c.235]

В других случаях для сплавов зарегистрирована более высокая жаростойкость, чем для обоих чистых металлов (легирующего компонента и основного металла). Так, например, наблюдалось повышение жаростойкости меди при легировании ее магнием, несмотря на более низкую жаростойкость самого магния. Для этого случая, очевидно, вторая теория защитного действия смешанных окислов представляется более правдоподобной.  [c.97]

В паяемых конструкциях применяют стали всех типов, чугуны, никелевые сплавы (жаропрочные, жаростойкие, кислотостойкие), медь и ее сплавы, а также легкие сплавы на основе титана, алюминия, магния и бериллия (табл. 47). Ограниченное применение имеют сплавы на основе тугоплавких металлов хрома, ниобия, молибдена, тантала и вольфрама.  [c.239]

Жаростойкость промышленных алюминиевых сплавов такая же хорошая, как и нелегированного алюминия. Исключение составляют сплавы с магнием типа АМг, так как при нагреве образуется собственный рыхлый оксид MgO.  [c.408]


Жаростойкие и нагревательные кабели предназначены для соединения электрических устройств и эксплуатации в окружающей среде с температурой до +1000 °С. В зависимости от назначения жаростойкие кабели имеют медные жилы, жилы из сплавов сопротивления, из термоэлектродных сплавов. Жилы располагают в медной трубе или трубе из нержавеющей стали, пространство между жилами заполняется окисью магния. Кабели герметизируются, для чего могут применяться специальные концевые заделки,  [c.160]

Бериллий применяют как легирующий элемент при получении различных сплавов на основе меди, магния, никеля, алюминия, железа и других металлов. Около 90 % производимого бериллия используют в виде различных сплавов, преимущественно на медной основе или для повышения прочности, жаропрочности, жаростойкости и других характеристик материалов.  [c.143]

Вскоре выяснилось, что добавки тория упрочняют сплавы на основе железа и меди, но никаких особых преимуществ перед другими легирующими элементами торий не имел. Прошло много лет, прежде чем легирование торием приобрело практическое значение. В авиационной и оборонной технике наших дней широко используются многокомпонентные сплавы на основе магния. Наряду с цинком, марганцем, цирконием в их состав входят торий и редкоземельные элементы. Торий заметно повышает прочность и жаростойкость этих легких сплавов, из которых делают ответственные детали реактивных самолетов, ракет, электронных устройств...  [c.59]

В кабельном производстве в качестве минеральной изоляции широко применяется окись магния (MgO), представляющая собой рыхлый легкий порошок белого цвета. В чистом виде она применяется в качестве изоляционного материала при изготовлении жаростойких кабелей, имеющих наружную цельнотянутую металлическую оболочку (из меди и ее сплавов, алюминия, нержавеющей стали).  [c.171]

Более высокая прочность, жаростойкость, кислотоупорность чугунных отливок может быть получена введением в чугун специальных легирующих примесей (марганца, кремния, хрома, никеля, молибдена). Кроме легирования, есть и другой способ улучшения свойств чугуна — модифицирование. Модифицирование осуществляется путем ввода в жидкий чугун перед его разливкой в малых количествах специальных добавок — модификаторов (размельченного ферросилиция, магния), способствующих улучшению свойств сплавов за счет измельчения структурных составляющих и изменения их формы. Например, вводя в чугун магний, получают графит шаровидной формы.  [c.11]

В связи с этим нами было изучено влияние небольших количеств добавок на жаростойкость меди при высоких температурах. В работе [1] показано влияние небольших количеств различных добавок (1 ат. %) на жаростойкость меди марки М1 при 700° в течение небольших отрезков времени. Из данных этой работы видно, что даже при небольших выдержках (до 1 часа) отмечается существенная разница в поведении медных твердых растворов при 700°. Двойные медные сплавы с 1 ат. % бериллия, алюминия или магния (это соответствует по весу 0,14% Ве 0,42% А1 0,38% Mg) окисляются при 700° и часовой выдержке, примерно, в 1,5—2 раза менее интенсивно, чем сама медь.  [c.89]

Анодирование — образование тонкой окисной пленки на алюминии, меди, магнии и их сплавах. Окисная пленка предохраняет детали от коррозии. Пленка на алюминии и его сплавах обладает высокой жаростойкостью (до 1500°С), высокими электроизоляционными свойствами, поверхностная твердость достигает твердости хромового покрытия.  [c.49]

Жаростойкость магния и его сплавов на воздухе может быть повышена малыми добавками бериллия (0,01 — 0,03%) или введением присадки редких элементов (0,24% Се-Ь0,32% Ьа), а жаропрочность, которая низка,— введением от 2 до 3% ТЬ.  [c.81]

Основной метод защиты от газовой коррозии сводится к применению легированных сплавов, обладающих так называемой жаростойкостью. Для снижения скорости окисления железа при 900°С вдвое достаточно ввести 3,5% алюминия, а вчетверо — около 5,5%. Концентрация легирующего компонента может быть ничтожной. Так, расплавленный магний настолько энергично окисляется на воздухе, что способен самовозгораться. Однако при введении всего лишь 0,001% бериллия скорость окисления магния резко снижается.  [c.51]


Благодаря огромным достижениям в области фундаментальных и прикладных исследований, а также высокому уровню техники и технологии первая треть XX в. ознаменована созданием, а вторая треть — бурным развитием производства принципиально новых материалов с заранее заданными свойствами, которыми не обладают так называемые традиционные (природные) материалы. Речь идет о синтетических полимерных материалах (пластмассах, синтетических волокнах, синтетическом каучуке, лаках и красках на основе синтетических смол), легких цветных металлах (алюминии, титане, магнии и др.) и сплавах иа их основе, жаростойких сталях, полупроводниковых материалах, металлокерамике и т. д., а также о модифицированных природных материалах, на широком применении которых базируется прогресс современной техники.  [c.53]

Большинство паяных конструкций изготовляют из сталей всех типов, чугуна, никелевых сплавов (жаропрочных, жаростойких и кислотостойких), а также меди и ее сплавов. В паяных конструкциях получают распространение легкие сплавы на основе титана, алюминия, магния, бериллия, а также сплавов на основе тугоплавких металлов хрома, ниобия, молибдена, тантала и вольфрама.  [c.95]

Есть указания, что добавка 0,01—0,001% Ве в жидкий магний сильно увеличивает жаростойкость и устраняет опасность вспышки сплава, позволяя поднимать температуру расплавленного магния с 680 до 800°.  [c.556]

Сплавы магния. Легирование магния некоторыми элементами значительно повышает его коррозионную стойкость и жаростойкость, улучшает механическую прочность, а также технологические свойства. Так, сплавы, содержащие алюминий (до 10%), пассивируются значительно лучше, чем магний так же влияет и присадка цинка (до 3%). Наиболее эффективной нрнсадкон является марганец, введение которого в магний достаточно в пределах от 1,3 до 1,5%. Его положительное влияние объясняют повышением перенапряжения водорода и образованием пленки из гидратированной окиси марганца. При добавке марганца в сплав Mg—Л1, максимум коррозионной стойкости достигается при содержании 0,5%, Мп.  [c.274]

Сплавы I) легирование жаростойких сплавов (1 % V), повышающее предел рабочей температуры с ПООдо 1370 С 2) на основе магния и алюминия с повышенными механическими свойствами 3) на основе железа с улучшенной обрабатываемостью, стойкостью к рекристаллизации и к окислению при высоких температурах  [c.357]

Небольшие количества бериллия применяют для легирования специальных сплавов на основе меди, никеля, алюминия. Введение его в эти пластичные металлы сильно повышает их твердость и прочность. Так, прочность берил-лиевой бронзы ( u-f2—3 % Be) достигает 1800 МПа (как у высокопрочных сталей) и в то же время не дает искр при ударах. Сплавы на основе Си, Ni или А1 с Be имеют высокую коррозионную стойкость в сухом и влажном воздухе, немагнитны, обладают повышенной упругостью и прочностью и мало изменяют свои свойства при нагреве до 300—400 °С. Все это позволяет применять такие сплавы для деталей приборов и механизмов. Примесь 0,5—1,5 % Be предохраняет серебро от тускнения. Есть сведения, что добавка около 0,01 % Be в жидкий магний увеличивает жаростойкость расплава магния, устраняя опасность его вспышки, и позволяет поднимать температуру расплавленного магния от 680 до 800 X, что иногда необходимо.  [c.277]

Требования, предъявляемые к материалам нагревательных элементов. Обмотки для электропечей сопротивления, для кухонных электропечей, а также для электроотапительных приборов в жилых помещениях должны удовлетворять весьма специальным условиям, так как вследствие небольших поперечных сечений проводников небольшое окисление в одном каком-либо месте увеличивает местное сопротивление, повышает нагрев в этой точке и таким образом ускоряет порчу прибора. Употребляемый для таких приборов материал должен быть в достаточной степени вязким, пригодным для лрименения в виде проволоки или ленты и устойчивым против ползучести и деформаций при высоких температурах. Материал должен быть стоек к окислению даже в атмосфере с содержанием, сернистых газов. Кроме того, вопрос взаимодействия между окислами, образующимися на проводниках, и огнеупором с которым они могут быть в контакте, становится иногда довольно серьезным. Сплавы хрома разрушаются щелочами, ко -то рые образуются иногда при действии постоянного тока, как это было указано Пфейлем получающиеся при этом хроматы могут повредить огнеупору. Попп з исследовал коррозию про волоки, происходившую в местах контакта ее с асбестом, и приписал это хлористому магнию, а не пиритам, как раньше полагали. Очевидно исследования огнеупорных материалов имеют такое же большое значение, как и исследования самих жаростойких сплавов.  [c.159]

Одним из методов борьбы с газовой коррозией меди и ее сплавов является легирование их магнием, алюминием, кремнием и др. Наиболее широко применяются при высоких температурах алюминиевые бронзы с содержанием алюминия до 10% и бернллневые бронзы (2,5% Ве). Эти бронзы жаростойки до 300° С. На латунях с содержанием цинка выше 20% образуется защитная пленка ZnO, которая при высоких температурах об-лада< т хорошими защитными свойствами.  [c.255]

По специальным свойствам чугуны можно разделить на четыре группы 1) износостойкие — высокопрочный чугун с шаровидным графитом, ковкий и др. 2) антифрикционные — хромоникелевые серые чугуны, высокопрочный и ковкий 3) жаростойкие — чугуны, легированные хромом, никелем, кремнием, магнием, и др. 4) кислотостойкие — ферросилиды (железокремнеуглеродистые сплавы, в состав которых входит 14,5—18% кремния), антихлор, нирезист.  [c.6]

Иттрий имеет слишком большой радиус атома, чтобы образовывать твердые растворы со многими более распространенными металлами, однако для магния в этом отношении имеются некоторые перспективы. Возможно, наиболее замечательное применение иттрий найдет как добавка к некоторым более жаростойким металлам и сплавам, где уже установлена его способность образовывать прочную окисиую пленку. По-видимому, дальнейшие исследования в этой области откроют большие возможности.  [c.262]


Жаростойкость — способность металлов и сплавов сопротивляться окислению и газовой коррозии при высоких температурах. Жаростойкость зависит от многих внешних и внутренних факторов. В основном за жаростойкость отвечают поверхность металла и чистота ее обработки. Полированные поверхности окисляются медленнее, так как оксиды распределены равномерно и более прочно сцеплены с поверхностью металла. Формирующаяся на поверхности оксидная пленка достаточно хорошо защищает металл от дальнейшего окисления в том случае, если она плотная и не пропускает ионы кислорода, хорошо сцеплена с подложкой и не отслаивается при механических испытаниях. К металлам, которые образуют такие пленки, относятся хром и алюминий. Оксидные пленки типа шпинели СГ2О3 и АЬОз хорошо защищают от окисления при высоких температурах. Если на поверхности образуется рыхлый оксид, как у магния, то он не стоек и не защищает металл от дальнейшего окисления.  [c.135]

Выбор основного металла и припоя. В качестве основного металла применяют стали всех типов, никелевые сплавы (жаропрочные, жаростойкие, кислотостойкие), медь и ее сплавы, а также легкие сплавы на основе титана, алюминия, магния и берилли .  [c.51]

Добавки хрома, циркония и никеля наиболее сильно повышают жаропрочность меди. Эти элементы заметно повышают также модуль упругости и температуру рекристаллизации меди, т. е. повышают межатомную прочность твердого раствора и тем самым повышают его устойчивость против распада при нагревании. Положительно влияют на теплопрочность меди и добавки магния и алюминия. Однако главная роль этих добавок и кадмия заключается в повышении жаростойкости (окалиностойкости) сплава.  [c.142]

Качество наплавленного металла при аргонодуговой сварке существенно зависит от режима сварки и особенно от длины дуги чем длиннее дуга, тем ниже качество шва, меньше, глубина провара. Глубина провара уменьшается и с увеличением скорости сварки. Аргонодуговой сваркой сваривают низколегированные, кислотостойкие и жаростойкие стали, а также алюминий, магний и их сплавы, титан, цирконий, молибден. Кислотостойкие и жаростойкие стали сваривают неплавящимся вольфрамовым электродом. Применение аргонодуговой сварки для кислотостойких сталей, таких как 1Х18Н9Т, значительно уменьшает выгорание примесей, особенно титана. Наряду с аргонодуговой сваркой, для этих сталей может применяться азотнодуговая сварка угольным электродом, правда, при этом происходит науглероживание шва.  [c.112]

Аустенитно-боридные стали и сплавы применяют преимущественно в качестве жаропрочных и жаростойких конструкционных материалов. Возможно их применение также и в качестве коррозионностойких материалов. Выявлено положительное влияние боридной фазы на стойкость аустенитных сталей и сварных швов против коррозионного растрескивания в некоторых хлоридосодержащих средах, в частности в хлористом магнии и морской воде.  [c.591]

Для точечной и шовной сварки легких металлов необходим инструмент с высокой электропроводностью (более 80%), а для нержавеющих и жаропрочных сплавов — с высокой жаростойкостью (твердость НВ 150 и более). Промежуточное положение занимают инструменты для сварки углеродистых и низколегированных сталей. Электропроводными являются сплавы с кадмием (0,9—1,2%), магнием (0,1—0,9%) и с добавками бора (0,02%) или серебра (0,1%). Жаропрочные сплавы целесообразно сваривать инструментом из бронзы БрНБТ твердостью до НВ 200, но низкой (50%) электропроводностью. Для углеродистых и низколегированных сталей допустимо снижение электропроводности до 70—75% и твердости до НВ 100—150. Для губок наиболее пригодна бронза БрНБТ. Сплавы по сравнению с чистой медью в 3—6 раз более стойки, а их расход в б—8 раз меньше. Так на губках из меди до их износа сваривают до 8500 стыков, а из сплава Мц-2— 103 000 стыков при этом расход на 1000 стыков уменьшается с 135,6 до 16,3 г.  [c.163]

Наиболее прочные из алюминиевых сплавов содержат в качестве основных добавок цинк, магний и медь, например сплав B 95. Сплавы ЭТ01Г0 типа широко применяются в ответственных конструкциях в виде кованых и прессованных изделий и листов. Саш имеют. несколько меньшую пластичность, чем дуралюмин, и обладают худшей коррозионной стойкостью и жаростойкостью. Эти оплавы рекомендуется применять в конструкциях, работающих при невысоких температурах нагрева (примерно до Г20°С). Оплавы обычно подвергают закалке в вЪде с последующи.м искусственным старением при 1100—1140°С.  [c.354]


Смотреть страницы где упоминается термин Жаростойкие Сплавы магния : [c.196]    [c.291]    [c.48]    [c.349]   
Конструкционные материалы (1990) -- [ c.407 , c.408 ]



ПОИСК



Жаростойкость

Жаростойкость сплавов

Жаростойкость. Жаростойкие сплавы

Магний

Магний и сплавы магния



© 2025 Mash-xxl.info Реклама на сайте