Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гелий получение

Экспериментальные значения коэффициента сжимаемости гелия, полученные в данной работе, приведены в табл. 1  [c.11]

Это значение основано почти исключительно на данных для гелия, полученных в лейденской лаборатории.  [c.201]

Стоимость 1 м гелия, полученного таким способом, составляет 8—10 руб.  [c.87]

В комбинированных установках с реакторами ВГР гелий сначала охлаждается от 1000° С до 800° С в технологических теплообменниках, в которых происходит химический процесс, а затем используется в энергетической установке. Возможность получения в подобных установках дешевых восстановительных газов позволит осуществить коренное усовершенствование металлургического производства, т. е. получить губчатое железо из руды методом прямого восстановления [5]. При еще более высоких температурах гелия в реакторах ВГР возможно сочетание их с магнитогидродинамическим (МГД) преобразованием тепловой энергии непосредственно в электрическую.  [c.6]


При температуре гелия 1500° С возможно получение неравновесной ионизации плазмы и осуществление экономичного процесса преобразования энергии в МГД-генераторе теплового потока с объемной плотностью 20—100 МВт/м канала [6].  [c.6]

Таким образом, основной задачей в развитии реакторов ВГР является получение как можно более высокой температуры гелия на выходе из реактора при сохранении основных преимуществ этого типа реактора.  [c.6]

Существует несколько методов изготовления топливных сердечников. Наиболее распространенным среди них является химический золь-гель-процесс, разработанный в США [6]. Он обеспечивает получение сферических частиц из двуокиси и карбида урана с высокой плотностью ( 98% теоретической) в широком диапазоне размеров. Исходными продуктами при изготовлении топливных сердечников методами порошковой металлургии являются двуокись урана и углерод в виде сажи. При температуре 2800° С происходит взаимодействие двуокиси урана с углеродом и образование карбида урана. После спекания и сплавления частиц проводится их грануляция и рассев.  [c.15]

Под криогенными сталями и сплавами подразумевают металлические материалы для машин и оборудования, предназначенные для получения, перево,зки и хранения сжиженных газов и, следовательно, эксплуатируемых до температур кипения кислорода (— 183°С), азота (—196 С), неона (—247°С), водорода (—253°С) и гелия (—269°С), а также сжиженных углеводородов (метила, бутана и др.), температура кипения которых лежит в интервале от —80 до —180°С.  [c.498]

Плавку стали в плазменно-дуговых печах применяют для получения высококачественных сталей и сплавов. Источник теплоты в этих печах — низкотемпературная плазма (30 000°С), получаемая в плазменных горелках. В этих печах можно создавать нейтральную среду заданного состава (аргон, гелий). Плазменно-дуговые печи позволяют быстро расплавить шихту, а в нейтральной газовой среде происходит дегазация выплавляемого металла, легкоиспаряющиеся элементы, входящие в его состав, не испаряются.  [c.48]

Цель данной книги — изложение основных принципов термометрии в интервале от 0,5 до приблизительно 3000 К. В течение последних 25 лет по этому вопросу накоплен весьма богатый опыт, и настало время объединить полученные результаты и обсудить достигнутые успехи. Большая часть работ последних лет относилась к низкотемпературной термометрии ниже приблизительно 30 К и их результаты послужили основой Предварительной температурной шкалы 1976 г. от 0,5 до 30 К. Таким образом, температура 0,5 К оказалась удобной нижней границей интервала температур, обсуждаемого в книге. Верхняя граница не обладает такой же определенностью, поскольку термометрия по излучению, рассматриваемая в гл. 7, может быть в принципе распространена на сколь угодно высокие температуры и достаточно лишь теплового равновесия в системе, температура которой измеряется. При всем разнообразии условий в термометрии, охватывающей интервал от температур жидкого гелия до точки плавления платины, общими являются требования теплового равновесия и теплового контакта с термометром. Эти требования неизменно присутствуют при всех термометрических работах и всех температурах на протяжении данной книги. Ясное понимание физических основ каждого из различных методов термометрии представляется обязательным для детального обсуждения их принципов, точности, интервала применения и ограничений. По этой причине каждой из основных глав предпослано краткое изложение физических основ метода в той мере, в какой это требуется для теории и практики термометрии.  [c.9]


При сварке меди и ее сплавов получение качественного шва — без пор, с требуемыми физическими свойствами — весьма затруднительно. Это связано с наличием в исходном металле закиси меди и высокой склонности меди к поглощению водорода. Возможна сварка меди и ее сплавов в защитных газах — аргоне и гелии, а также в азоте, который по отношению к этому металлу является инертным газом. Сварку ведут неплавящимися электродами — вольфрамовым и угольным (не для всех марок меди) на постоянном токе прямой полярности с подачей присадочной проволоки.  [c.388]

Источники магнитного поля. В качестве источников магнитного поля можно использовать импульсные магниты, сверхпроводящие магниты, постоянные магниты и электромагниты. Импульсные магниты позволяют получать сильные магнитные поля (до 2-10 Э), но относительная точность в этом случае меньше, чем при использовании постоянных магнитов. Удобство сверхпроводящих магнитов заключается в возможности получения достаточно сильных магнитных полей (до 50 кЭ) при небольших габаритах магнита. Однако такие магниты сложны в эксплуатации и для их работы необходима температура жидкого гелия. Поэтому наиболее целесообразно при-  [c.302]

Рис. 40.13. Интерференционные кольца, полученные с эта.чоном Фабри — Перо при его освещении излучением гелий-неонового лазера (А. = 632,8 нм). Рис. 40.13. Интерференционные кольца, полученные с эта.чоном Фабри — Перо при его освещении излучением гелий-неонового лазера (А. = 632,8 нм).
Особенно высокие требования предъявляются к частотно-контрастным характеристикам при получении толстослойных (трехмерных) голограмм, так как расстояние между пучностями в. этом случае имеет порядок л/2, что при длине волны гелий-неонового лазера (/.= 0,6328 мкм) требует разрешения около 5000 линий/мм при высоком контрасте.  [c.38]

Как известно, информация об объекте фиксируется на голограмме в виде совокупности интерференционных полос, причем расстояние между соседними полосами имеет порядок длины волны света, используемого в процессе получения голограммы. Следовательно, максимально возможная плотность записи информации обратно пропорциональна квадрату длины волны света с коэффициентом пропорциональности порядка единицы. Например, если для записи информации используется излучение гелий-неонового лазера (с длиной волны равной 0,6.3 мкм =, = 0,63- 1() см), то на I см голограммы можно записать до 3- К)" бит (бит — это двоичная единица информации, принимающая значения 0 или I). При этом, естественно, предполагается, что регистрирующая среда, на которой записывается голографическое поле, обладает разрешающей способностью, превышающей 2000 линий/мм. Такие вещества, как указывалось ранее, существуют и широко используются в голографии.  [c.96]

Теплоемкость жидкости в этой модели состоит из двух частей, соответствующих энергетическим спектрам фононов и ротонов. При достаточно низких температурах возбуждаются только фононы они приводят к появлению члена с в законе теплоемкости. При повышении температуры в теплоемкость начинают вносить вклад и ротоны, поэтому подъем у кривой теплоемкости становится более крутым. Единственными измерениями теплоемкости гелия ниже 1 К, доступными в то время, были некоторые предварительные измерения Симона и Пикара. Как оказалось, значения теплоемкости, полученные при этих измерениях, намного превышали пстинные значения, по-.лученные впоследствии различными авторами. Это заставило Ландау высказать сомнения о возможности возникновения ротонных возбуждений при очень низких температурах. Как выяснилось в дальнейшем, использованные им данные по фононной энтропии гелия (полученные в 1940 г. А. Мигда-лом) находятся в прекрасном согласии с измеренными значениями.  [c.807]

Вариационный метод находит широкое применение. Например, энергия нормального состояния атома гелия полученная Гиллераасом ( 32),  [c.200]


Сообщалось, что В4С сохраняет стабильность размеров при 1%-ном выгорании атомов В при температурах до 435° С [155]. Растрескивание B4G произошло после 16,6%-ного выгорания атомов В [118]. В работе Вольврейджа указывается, что карбид бора испытывает полное раздробление после 36%-ного выгорания атомов В [211]. Опытные данные указывают, что горячепрессованные образцы B4G несколько более устойчивы при облучении, чем холоднопрессованные [162, 181, 187, 208]. Облучение до выгорания 66% атомов В вызывает превращение монолитного В4С в порошок. Результаты по выделению гелия, полученные на порошковых образцах, облученных до 22 и 66%-ного выгорания атомов В , показывают, что во время облучения выделяется соответственно  [c.205]

Контроль эталонной концентрации гелия, полученной способом дозировки (процентное содержание гелия до (1— 5) 10 %), производят с помощью гелиевого течеискате-ля путем анализа отобранной пробы и сравнения полученных показаний и показаний по чистому атмосферному воздуху, содержащему 5 10 % гелия с точкой росы не выше 233 К.  [c.103]

Вероятно, наиболее значительное воздействие на материалы оказывают ядерные превращения основных и легирующих элементов при взаимодействии их с тепловыми нейтронами. При этом больщннство эффектов связано с появлением гелия, образующегося при взаимодействии нейтронов с ядрами °В, или при реакции, в которой Ni сначала превращается в Ni, затем в результате реакции (п, а) превращается в Ре и гелий. Реакция на ядрах бора существенна при относительно малых дозах облучения, так как имеет высокое сечение захвата нейтронов и поэтому быстро выгорает, а реакция на ядрах никеля существенна при очень высоких дозах, так как образование гелия пропорционально квадрату флюенса нейтронов. Рис. 8.4 иллюстрирует изменение числа атомов гелия на 1г никеля с флюенсом тепловых нейтронов. При содержании бора 2-10 % это число составляет l,6 10 (в естественном боре 20% изотопа Б). Бор в количестве 2-10 —5-10 2% добавляют к некоторым аустенитным сталям для улучшения их свойств, где обычно он концентрируется по границам зерен. При флюенсах тепловых нейтронов 3-1№4 нейтр/см гелий, получающийся при ядерных реакциях В, является преобладающим, но при более высоких флюенсах количество гелия, образовавшегося по реакции (и, а) на ядрах никеля, далеко превосходит его. Однако гелий, получаемый на ядрах никеля, первоначально диспергирован по всему материалу и только при температуре >750° С он мигрирует к границам зерен. Действие гелия, полученного таким образом, хотя и недостаточно для уменьшения пластичности, приводящего к разрушению изделия, должно учитываться в расчетах. Уменьшение пластичности малозаметно до концентрации гелия 10 % при температуре <750° С. Более заметен этот эффект для таких сплавов, как Р516, которые содержат до 5-10 7о В и 40% Ni, хотя изготовляемые из них узлы не подвергаются значительному нагружению при высокой температуре в процессе эксплуатации тепловыделяющего элемента.  [c.97]

В 1903 г. К. Э. Циолковский сделал предположение о том, что кислород найдет широкое применение в качестве окислителя ракетного топлива. Как мы теперь знаем, его предположение полностью сбылось. В настоящее время невозможно себе представить космонавтику без использования таких газов, как кислород, водород, гелий, получение которых непосредственно связано и обеспечивается развитием техдики низких температур [22].  [c.7]

А ойМость ожижения 1 кг гелия (получения 0,8 л жидкого гелия) с учетом только энергетических затрат со-двит в идеальном случае 2,7 коп. в реальном случае тоимость ожижения будет значительно больше и составит 22,5—44,8 коп. Следовательно дальнейшее совершенствование ожижителей с целью уменьшения энергетических затрат является актуальной задачей техники низких температур.  [c.59]

Получение температур гелия на выходе из реактора на уровне 1000°С позволит в энерготехнологических установках осуществить целый ряд энергоемких химических процессов, требующих высокопотенциального тепла. Имеется несколько возможностей использования гелия с температурой 1000° С в технологических процессах, например для конверсии метана,  [c.5]

Полученные таким образом цементы обладают очень высокой кислотостойкостыо даже при высоких температурах, особеи-Е10 в концентрированных минеральных кислотах. Исключение составляют плавиковая кислота при обычной температуре и фосфорная кислота при высокой температуре. Причину сравнительно малой стойкости этих цементов в слабых минеральных и органических кислотах следует искать в характере протекания реакции между этими кислотами и силикатом натрия. Жидкое стекло под воздействием крепкой кислоты энергично разлагается, и цемент быстро уплотняется в результате обезвоживания 31 (ОН)4- Под воздействием слабых кислот выделение геля кремневой кислоты из жидкого стекла происходит медленно, цемент оказывается проницаемым для кислоты, и гель ею вымывается.  [c.458]

При рассмотрении равновесия сил, приложенных к системе тел, можно мысленно расчленить систему тел на отдельные твердые тела и к силам, действ у ющ,им на эти тела, применить условия равновесия, полученные для одного гела. В эти условия равновесия войдут как внеш ние, так и внуч реннне силы системы тел Внутренние силы на основании аксиомы о равенстве сил действия и противодействия в каждой точке сочленения двух тел образуют равновесную систему сил (силы Н а и На, рис. 47). Поэтому внешние силы, действуюш,ие на систему тел отдельно, без внутренних сил, удовлетворяют условиям равновевия еил, приложенных к твердому телу, за которое следует принять эту систему тел.  [c.53]

Разработка способов получения высокоскоростных ионов, особенно протонов и ионов гелия, обладающих кинетической энергией больше 1 млн. элек-тронвольт, позволила бы сильно облегчить изучение атомных ядер, потому  [c.144]

Эта температура соответствует энергии порядка 10 эВ, достаточной для полной ионизации атомов с малым атомным номером. Но если атомы водорода и гелия ионизованы, то общее число частиц N надо увеличить, прибавив к нему число свободных электронов, и, как следует из уравнения (117), средняя температура окажется в 2—3 раза ниже значения, полученного в (118). Имеются данные, что Солнце не изотермично во всем его объеме, т. е. не находится при постоянной температуре. Тем не менее результат нашей оценки близок к тому, что получается при более обоснованных расчетах средней температуры ядра Солнца. Температура на его поверхности намного ниже, как показывает подсчет по потоку излучения, испускаемо.му Солнцем, эта температура составляет около 6-10 К. Наш результат (118) для средней температуры Солнца более чем в 10 раз превышает визуально оцениваемую температуру его поверхности.  [c.303]


С описанными свойствами звуковых волн в гелии И тесно связан и вопрос о различных способах их возбуждения ( , М. Лиф-шиц, 1944). Обычные механические способы возбуждения звука (колеблющимися твердыми телами) крайне невыгодны для получения второго звука в том смысле, что интенсивность излучаемого второго звука ничтожно мала по сравнению с интен-сив(1остью одновременно излучаемого обычного звука. В гелии II возможны, однако, и другие, специфические для него способы возбуждения звука. Таково излучение твердыми поверхностями с периодически меняющейся температурой интенсивность излучаемого второго звука оказывается здесь большой по сравнению с интенсивностью первого звука, что естественно ввиду указанного выще различия в характере колебаний температуры в этих волнах (см. задачи 1 и 2).  [c.727]

Таким образом, возникновение дифракционных полос вблизи границы геометрической тени характерно только в случае ограничения сечения волнового фронта непрозрачным экраном с отверстием. В случае же постепенного уменьщения амплитуды колебаний, что тоже эквивалентно некоторому эффективному ограничению волнового фронта, дифракционные явления приводят только к расширению поперечного сечения пучка, а чередования областей с ббль-шими и меньшими значениями освещенности не наблюдается. Это хорошо видно на фотографиях (рис. 9.8, б, в, г), полученных с помощью гелий-неонного лазера при последовательном смещении плоскости наблюдения. Фотография рис. 9.8, д получена после ограничения пучка в плоскости ЕЕ щелью из лезвий бритв, в результате чего появились характерные дифракционные полосы (ср. рис. 9.7, а).  [c.189]

Первые лазерные голограммы были получены с помощью гелий-неонового лазера с длиной волны излучения >,==0,6328 мкм, работающего на нейтральных атомах. Существующие гелий-неоновые лазеры могут генерировать непрерывные колебания также в ближней инфракрасной области спектра на следующих длинах волн 1,15 мкм и 3,36 мкм, имеющие узкие спектральные линии, что позволяет с их помощью получать 1олограммы сцен глубиной в несколько десятков метров. Однако малая мощность излучения таких лазеров (0,1—0,5 мВт) ограничивает возможность их применения, так как в. этом случае для получения голограммы требуется большое время. экспозиции, составляющее десятки минут. При увеличении мощности гелий-неоновых лазеров путем увеличения длины газоразрядной трубки увеличивается и ширина спектральной линии, так что при мощности 100 мВт гелий-неоновый лазер позволяет регистрировать сцены глубиной не более 20 см.  [c.36]

Для получения сверхнизких температур применяется метод адиабатического размагничивания парамагнитных веществ (Дебай, 1926 г.), предварительно охлажденных до температуры жидкого гелия, испаряющегося при пониженном давлении ГК). Охлаждение при адиабатическом размагиичивании  [c.159]

В книге последовательно в систематизированном виде изложены способы получения низких температур и криогенпая техника, электрические, тепловые и магнитные свойства вещества при лизких температурах, методика исследований и их результаты, метод адиабатического размагничивания. Специальные разделы посвящены явлению сверхпроводимости и свойствам жидкого гелия.  [c.4]

Так, холодильные циклы на уровне жидкого водорода уже широко используются в крупнейших промышленных установках для получения тяна -лой воды. Низкие температуры на уровне жидкого гелия начинают применяться в практической радиотехнике для осуществления малошумяи1,их молекулярных усилителей (твердые мазеры ) и генераторов на частотах сантиметрового диапазона. Высокодобротные сверхпроводящие объемные резонаторы находят себе применение н технике нзмерепий на сверхвысоких частотах. Сверхпроводящие токовые и магнитные устройства начинают внедряться как элементы вычислительных машин взамен электронных ламп.  [c.5]

Каков бы ни был способ получения температуры ниже инверсионной точки—с помощью жидкого водорода, испаряющегося при пониженном давлении, или с помощью холодного газа из детандера,—во всех случаях непрерывный поток предварительно охлажденного сжатого гелия должен пройтп противоточный теплообменник или насадку регенератора и расшириться изоэнтальпическп в дроссельном вентиле.  [c.132]


Смотреть страницы где упоминается термин Гелий получение : [c.700]    [c.395]    [c.60]    [c.178]    [c.306]    [c.90]    [c.343]    [c.388]    [c.33]    [c.105]    [c.143]    [c.149]    [c.289]    [c.292]    [c.403]    [c.421]    [c.488]   
Производство электрических источников света (1975) -- [ c.139 ]



ПОИСК



Гелей

Гелий

Золь-гель-методы получения наногибридных полимер-неорганических композитов



© 2025 Mash-xxl.info Реклама на сайте