Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Молибден Плотность

При легировании нержавеющей стали молибденом плотность тока пассивации снижается, по крайней мере, на порядок.  [c.115]

Молибден широко применяют в электровакуумной технике при менее высоких температурах, чем вольфрам накаливаемые детали из молибдена должны работать в вакууме, в инертном газе или в восстановительной атмосфере. Характеристики молибдена приведены в табл. 7-1 и на рис, 7-26. Механическая прочность молибдена в очень большой степени зависит от механической обработки материала, вида изделия, диаметра стержней или проволоки и последующей термообработки. Предел прочности при растяжении молибдена — от 350 до 2500 МПа, а относительное удлинение перед разрывом от 2 до 55 %. Плотность молибдена почти в два раза меньше, чем вольфрама. В электровакуумной технике наиболее распространены марки молибдена МЧ (молибден чистый) и МК (молибден с кремниевой присадкой). Последний обладает повышенной механической прочностью при высоких температурах. Молибден применяется в качестве материала для электрических контактов.  [c.215]


Увеличение плотности дефектов решетки достигается легированием, закалкой с последующей термообработкой и холодной деформацией (наклепом). В высококачественной стали содержание углерода небольшое, всего 0,3—0,4 процента. Благодаря легирующим добавкам (хром, никель, марганец, молибден, кремний, ванадий и вольфрам) прочность стали значительно повышается, особенно при высокой температуре.  [c.49]

Ниобий и тантал имеют примерно одинаковый предел прочности, но сильно отличаются по плотности. Оба металла отличаются повышенной пластичностью. Ниобий более устойчив, чем молибден, против окисления, но также может насыщаться кислородом, азотом и водородом и снижать при этом свои свойства. Обрабатываемость ниобия и тантала удовлетворительная. Из-за высокой пластичности эти металлы налипают на режущие кромки инструментов и образа  [c.38]

Глубина борирования с увеличением содержания углерода и легирующих элементов в стали снижается, причем наиболее сильно при введении молибдена и вольфрама. Никель, марганец и кобальт мало влияют на глубину слоя. На микротвердость борированного слоя легирующие элементы действуют следующим образом никель ее снижает, а хром, молибден, вольфрам и марганец повышают. Влияние плотности тока и температуры при электролизном борировании на глубину слоя для различных марок стали показано на рис. 74.  [c.128]

Отсутствие полиморфных превращений, высокое значение температуры плавления, модуля упругости и теплопроводности при относительно невысокой плотности и малом коэффициенте линейного расширения молибдена привлекают к нему все большее внимание конструкторов и разработчиков жаропрочных сплавов для новой техники [1, 78, 83, 86, 87, 145, 146]. В качестве конструкционного материала электроламповой промышленности и как легирующий компонент сталей молибден применяется уже несколько десятилетий. Промышленное производство металлического молибдена и применение его в электроламповой  [c.7]

По многочисленным экспериментальным данным, моно-кристаллический молибден обладает существенной анизотропией работы выхода электронов для разных кристаллографических плоскостей (см. табл. 4.1), что связано с различной плотностью упаковки атомов в кристаллической решетке на разных плоскостях— гранях кристалла [124, 125, 154, 155]. Подробная подборка экспериментальных данных по термоэмиссионным свойствам молибдена дана в справочнике [155].  [c.78]

Не прекращаются исследования в области создания новых жаропрочных сплавов. Например, в США испытываются турбинные лопатки из сплава на основе тантала, хотя тантал обладает слишком высокой плотностью. В качестве основы для жаропрочных сплавов рассматриваются также ниобий и молибден, которые пока не применяются из-за недостаточной коррозионной стойкости. Обнадеживающие результаты получены при испытаниях эвтектических сплавов с кристаллическими волокнами, образующимися в процессе затвердевания.  [c.52]


Высокое сопротивление износу спеченных шестерен обусловлено низким содержанием феррита, высоким качеством поверхности и небольшой пористостью поверхностного слоя. Благодаря наличию пор, пропитанных смазкой, уменьшается износ и снижается шум при работе. Легирование спеченного железа никелем (1-5 %), молибденом (0,5 -1 %) и хромом (1-3 %) позволяет достичь после термообработки прочности при растяжении 500 - 650 МПа при относительной плотности 85 - 90 %. Применяют и более сложное комплексное легирование.  [c.21]

Большое значение имеет использование чистого хрома, обладающего весьма высокой температурой плавления и в то же время большим сопротивлением воздействию окислительных сред и значительно меньшей плотностью, чем такие тугоплавкие металлы, как вольфрам и молибден.  [c.5]

Применение титана как конструкционного материала обусловлено благоприятным сочетанием его высокой механической прочности, коррозионной стойкости, жаропрочности, малой плотности. Значительно улучшает механические и коррозионные свойства титана легирование его марганцем, хромом, алюминием, молибденом, кремнием и бором.  [c.385]

Марку порошковой стали характеризуют буквенные индексы и цифры. Первая буква "С" указывает на класс материала (сталь), вторая буква "П" - на метод производства (порошковая). После буквы "П" записывается среднее содержание углерода в сотых долях процента. Как и в случае сталей, производимых традиционными методами, легирующим элементам присвоены символы. Наиболее часто в качестве легирующих элементов в порошковых сталях используются следующие Г -марганец, Д - медь, М молибден, Н -никель, П - фосфор, X - хром, Гр - фа-фит. Символы легирующих элементов следуют за цифрой, указывающей среднее содержание углерода. Цифры, идущие за символом элементов, указывают примерное содержание данного легирующего элемента. При содержании его менее 1 % цифра отсутствует. Цифра после дефиса характеризует фуппу плотности. Порошковым сталям присвоены следующие фуппы плотности 1 - пористость 25. .. 16 % (плотность 5,9. .. 6,6 г/см ), 2 - пористость 15. .. 10 % (плотность 6,7. .. 7,Гг/см ), 3 - пористость 9. .. 2 % (плотность 7,15. .. 7,70 г/см ), 4 - пористость менее 2 % (плотность более 7,70 г/см ). Буква "А" после цифры указывает на повышенное качество материала.  [c.110]

Широкое применение новых конструкционных материалов на основе тугоплавких и высокоактивных металлов (титан, цирконий, молибден, вольфрам и др.) потребовало создания способа их обработки источником тепла с высокой плотностью энергии в условиях защиты от взаимодействия с газами воздуха (кислород, азот). Наиболее полно этим условиям отвечает электронно-лучевая технология.  [c.244]

Молибден (Мо) — химический элемент VI группы периодической системы элементов, атомный номер 42, атомная масса 95,94. Светлосерый металл, плотность 10200 кг/м , = 2620°С. Химически стоек (на воздухе окисляется при температуре выше 400°С). Соединения молибдена обладают значительной окислительно-восстановительной и каталитической способностью. В природе существуют семь изотопов молибдена искусственно получены еще 10. Молибден относится к стратегическим металлам.  [c.199]

Такое различие, очевидно, связано с различием в дислокационной структуре и 7 зменением ее при нагреве. Рентгеновские исследования показали, что после шлифования плотность дислокаций в никеле и железе примерно одинакова, а после нагрева до 0,5 Гпл в железе на порядок ниже, чем в никеле. Очевидно, в а-железе, а также в хроме и молибдене — металлах с о. ц. к. решеткой — наклепанное состояние менее устойчиво, чем в никеле и меди — г. ц. к. металлах.  [c.133]

Молибден имеет большую плотность 10,3 он обладает решеткой объемноцентрированного куба, которая в процессе нагрева до температуры плавления не претерпевает аллотропических превращений. Поэтому термическая обработка молибдена заключается только в отжиге для снятия внутренних напряжений при 950 С, а после деформации в рекристаллизационном отжиге при 1200—2000 С.  [c.406]

В табл. 19 показано, как изменяются плотность тока пассивации, плотность тока в пассивном состоянии, а также область максимальной запассивированности у сталей 18% Сг—8%Ni и 18%Сг—10% Ni—2% Мо в зависимости от состава раствора, его концентрации и температуры. Наиболее агрессивной средой является H2SO4, требующая больших токов для пассивации. Однако в пассивном состоянии плотность тока, характеризующая скорость растворения при анодной защите, и в растворах H2SO4, невелика. У стали с молибденом плотность тока в пассивном состоянии и плотность тока пассивации меньше, чем у стали, нелегированной молибденом. Плотность тока в пассивном состоянии (г пп) так же как и плотность тока пассивации (in), сильно возрастает с повышением температуры раствора, что можно видеть из данных для растворов серной и фосфорной кислот. Величина анодного тока в пассивном состоянии inn— важный параметр для  [c.116]


Молибден является тяжелым металлом его плотность равна 10,2 Мг1м - . Температура плавления молибдена 2010° С. Молибден обладает достаточно хорошими физико-механическими свойствами, в особенности сопротивлением ползучести при высоких температурах. Предел прочности листового материала 1200 относительное удлинение 10—12%, твердость  [c.292]

Кобальт можно анодно запассивировать в 0,5 т растворе H2SO4. Для этого необходима минимальная плотность тока 5000 А/м , что в 14 раз больше соответствующей плотности тока для никеля [1 ]. Легирование кобальта хромом приводит к уменьшению плотности тока для пассивации сплава с 10 % Сг требуется плотность тока лишь в Ю А/м (1 мА/см ). Сплав, содержащий 10—12 % Сг, почти не подвергается коррозии в горячем и холодном 10 % растворе HNO3, однако в 10 % растворе H2SO4 или НС пассивации не происходит, и скорость коррозии достигает очень высоких значений. Легирование сплавов Со—Сг молибденом или вольфрамом ослабляет воздействие на них серной или соляной кислоты, но не азотной. i  [c.369]

Молибден (Мо), представляющий стратегический интерес в оборонной промышленности, относится к подгруппе VIA (Сг, Мо, W), расположен под номером 42, имеет атомную массу 95,95, атомный радиус г = 0,140 нм. Его температура плавления 2620°С, кипенил 4600°С. Кристаллическая структура метлибдсна - кубическая емноцентрированш1я, а = 0,31466 нм, плотность составляет 10,2 г/см.  [c.91]

Поперечное сечение реактора-токама-ка показано на рис. 7.2. Термоядерные нейтроны уносят более 80% энергии, выделяющейся в реакции. Они проходят через внутреннюю стенку 2 вакуумной камеры и поглощаются во внещнем бланкете 4. Стенку 2, ограничивающую вакуумную полость токамака, принято называть первой стенкой, так как она первой воспринимает тепловой и радиационный потоки от плазмы. Размеры токамака и ресурс его работы во многом определяются материалом и размером первой стенки. В качестве материала для ее изготовления используют легированные стали, ниобий либо молибден, которые выдерживают тепловые потоки до (1 ч- 5) 10 Вт/м . При большей плотности теплового потока ресурс первой стенки оказывается недостаточным. Однако расширение вакуумной камеры с целью уменьшения плотности потока связано с увеличением размеров реактора и, следовательно, с большими затратами на его изготовление. Поэтому для защиты первой стенки используется вдув холодного газа между плазмой и стенкой и литиевая защита.  [c.283]

Молибден. Тяжелый металл с плотностью 10,2 el Ai серебристобелого цвета с содержанием 99,92 Мо получают, главным образом, дуговой плавкой из порошка с расходуемым электродом. Его Т л = = 2622° С, ТК1 = 5,4-10-8 ц рад. Наличие прочности и твердости при высоких температурах обеспечивает возможность широкого применения молибдена. Удельное сопротивление молибдена (0,048 ом -мм Ы) ниже, чем у других тугоплавких металлов он применяется для анодов и, сеток генераторных и усилительных лампе рабочей температурой 1000—1700° С его используют кроме того для оснований (кернов) катодов магнетронов и газонаполненных приборов. Детали для вводов в тугоплавкие стекла изготовляют также из молибдена. Максимальная рабочая температура 1700°С.  [c.300]

При разработке совместимых с бором матриц должны быть учтены также следующие соображения. -Сплав должен быть стабильным, легко прокатываться в фольгу ужной для изготовления композита толщины (при использовании диффузионной сварки в твердой фазе), должен иметь изкую плотность и высокую прочность в условиях службы, а также обладать хорошей обрабатываемостью, необходимой для промышленного производства композита. Кляйн и др. [20] отметили, что легирование титановых сплавов теми элементами, которые снижают скорость реакции с борным волокном, вызывает переход титанового сплава в р-мо-дификацию, которая предпочтительна и при прокатке фольги. Максимальное содержание алюминия в р-сплаве ограничивается образованием а-фазы или фазы T13AI. На основе диаграммы состояния тройной системы Ti—V—А1 [10] за вероятный предел растворимости принято содержание алюминия 2,6%. Молибден, как и алюминий, оттесняется растущим диборидом. Влияние этого элемента было изучено более тодроб-но. В указанной выше работе [i20] отмечается, что при высоком содержании молибдена в дибо-ридной фазе образуется двуслойная структура (рис. 17). Для выяснения влияния содержания молибдена был исследован ряд р-сплавов. Полученные в этой работе константы скорости реакции k при 1033 К приведены в табл. 6. Чтобы определить вклад молибдена в k, была использована величина удельной скорости ре-  [c.133]

Поскольку хром и молибден имеют одинаковую кристаллическую решетку и образуют твевдый раствор амещения, можно воспользоваться правилом 5еггарда (линейная зависимость периода решетки от концентрации легирующего элемента) и рассчитать максимальную концентрацию молибдена в поверхностном слое хромового покрытия ,полученном при плотности тока 0,04 а/см и продолжительности электролиза 30 мин.  [c.35]

Прочность карбидно-металлических сплавов сохраняется до более высоких температур, чем это наблюдается в жаропрочных сплавах на основе металлов. В отечественной и зарубежной технике сравнительно давно используются сплавы на основе карбидов вольфрама, титана, хрома и др. [5, 23] с такими металлическими связками, как никель, кобальт, молибден, вольфрам и др. Например, сплав, состоящий из 47,5% Т1С, 2,5% СГ3С2 и 50% никеля имеет плотность 6,4 г см , твердость HV 720 кПмм и предел прочности при изгибе а э = 161 кг мм .  [c.423]

Изучены также механические свойства и структура стали после ВТМО (8 — 35%, у р = 1м/с при 900° С). Физические причины, определяющие увеличение прочности при ВТМО, заключаются в повышении плотности дислокаций в мартенсите й дроблении его кристаллов йа отдельные фрагменты величиной в доли микрона с взаимной разорнентировкой до 10—15°. В стали формируется определенная субструктура полигонизации (рис. 8, г). Дислокационные границы такого типа отчетливо видны на электронных микрофотографиях. Фрагментация кристаллов мартенсита обнаруживается при сопоставлении электронограмм. У сталей, легированных элементами, вызывающими эффект вторичного твердения (ванадием, молибденом, вольфрамом), упрочнение может быть  [c.20]


Молибден Мо (Molybdaenum). Порядковый номер 42, атомный вес 95,95. В виде порошка молибден имеет тёмную матово-серую окраску компактный же металл—серебристо-белый и блестящий. При высокой температуре куётся и сваривается пл= 2620 , <ка =4800 плотность 10,2. При обыкновенной температуре молибден устойчив по отношению к воздуху однако при накаливании даже компактный металл довольно быстро окисляется до трёх-окиси МоОд. При повышенной температуре реагирует с хлором (образуя M0 I5), бромом, углеродом (образуя карбид), окисью угле-  [c.361]

Как было показано, увеличение количества частиц фаз внедрения и их коагуляция должны сопровождаться генерацией дислокаций, частично снимающих напряжения около крупных частиц. Исследования субструктуры литого молибдена, модифицированного карбидом циркония [96], показало, что в металле по мере увеличения количества карбида уменьшаются размеры зерен, субзерен первого и второго порядка (субзерна второго порядка в нелегированном литом молибдене вообще отсутствуют), увеличиваются угол разориентации между субзернами первого порядка, удельная разориентац ия субзерен первого и второго порядков и избыточная плотность дислокаций внутри и на границах субзерен первого порядка. Авторадиографическое исследование (с применением радионуклида показывает (рис. 3.6), что распад твердого раствора при введении карбидов происходит не только на границах литого зерна, но и на субструктурных границах, а также, по-видимому, на отдельных нагромождениях дислокаций внутри субзерен.  [c.54]

Исследование диффузии цезия из паровой фазы в молибден показало 35, 36, 72], Рис. 4.1. Плотность электронного что коэффициент диффузии ионного (б) токов в зависи-цезия существенно зависит "Х"о к7тода молибдено-  [c.79]

Причиной радиационного упрочнения и охрупчивания является ограничение подвижности дислокаций радиационными дефектами или снижение сопротивления отрыву из-за стимулированного радиацией перераспределения и обогащения примесями внутренних микроповерхностей (границ зерен, субзерен, комплексных радиационных дефектов). Радиационное охрупчивание по" второму механизму имеет место в железе и сталях перлитного класса, загрязненных фосфором, сурьмой, оловом, мышьяком. Никель и марганец способствуют, а молибден препятствует сегрегации этих примесей и, следовательно, радиационному охрупчиванию,, Медь, марганец и никель усиливают упрочнение и охрупчивание указанных материалов за счет увеличения плотности комплексных радиационных дефектов. За меру радиационного охрупчивания корпусных сталей перлитного класса обычно принимают прирост критической температуры хрупкости (табл. 8.46).  [c.301]

Молибден имеет Гпл = 2G22 °С, его плотность почти вдвое меньше, чем вольфрама. Из него можно р<ыполнять конструкции, работоспособные до  [c.256]

Удельное электрическое сопротивление сухого отвала определенное по четырехэлектродной схеме [19,30,51] составляет 20 Ом-м, pH водной вытяжки 3.5-4.5. При влажности 25% и более удельное сопротивление отвала резко снижается и не привышает 1.0 Ом- м. Химический состав отвала включает в себя до 30% сернистых соединений, а также в небольшом количествах медь, цинк, вольфрам, молибден, свинец, кобальт, кадмий, и некоторые другие металлы. Плотность отвала Башкирского медно-серного комбината (БМСК) составляет 1.9 г/см .  [c.79]

Молибден — металл с плотностью 10,22, по цвету напоминает сталь и имеет очень высокую температуру плавления (около 26Ю ). Молибден иапяется одним из наиболее известных и широко применяемых тугоплавких металлов, а также одним из наиболее важных легирующих элементов, добавляемых в стали, чугуны и некоторые сплавы, не содержащие железа.  [c.400]

Вследствие высокого модуля упругости молибден может приобретать все возрастающее значение в ракето- и самолетостроении. Сравнение значений отношения модуля упругости к плотности для нескольких промышлсн ных сплавов показывает, что для молибдена это отношение является максимальным в широком интервале температур (рис. 6). Па этом графике зависимости отношения модуля упругости к плотности от темг ературы для нсскольких сплавов видно относительное преимущество сплава молибдена, содержащею 0,5% Ti, в широком интервале температур — от комнатной до 1315°. Высокий модуль упругости при комнатной температуре имеет  [c.408]

Осаждение сплава никель — молибден— бор. Боргидрид натрия—0,6—1,2 ме-табисульфят натрия — 2—4 молибдат натрия— 3,1—31 никель хлористый — 25—30 этилендиамин—40—60. /=80—90° С, плотность загрузки — 2 дм /л Q=4—5 мкм/ч. Стекло активируют, сплавы меди контактируют с алюмикием. Состав сплава (%) молибден — 3—8 бор — 5—7, остальное — никель. Твердость после термообработки 950—1000 кгс/мм . Включение в сплав 10— 20% молибдена повышает блеск покрытия на 10—голо-  [c.211]

При вжигании молибденового порошка между керамикой и молибденом образуется прочный промежуточ- ный слой. Состав этого промежуточного слоя зависит от исходного состава пасты и состава керамики. При металлизации молибденом и наличии добавки железа происходит частичное окисление Мо до его основных оксидов., Оксиды молибдена, соединяясь с кислыми оксидами керамики Si02, образуют сложное стекло, определяющее прочность и плотность спая. Металлизация по молибденовой технологии дает прочные покрытия с керамикой, содержащей кислые оксиды.  [c.88]

Молибден (Мо)—тугоплавкий металл. Открыт в 1778 г. К. В. Шееле. Порядковый номер 42, атомная масса 95,95, плотность 10,3 г/см температура плавления 2620 + 40° С, температура кипения 4800 + 40° С. Кларк молибдена 3- Основной источник получения — молибденит M0S2. Около 90% молибдена используется для производства сталей и сплавов. Соединения молибдена применяют в химической промышленности.  [c.197]

Основным рудным минералом молибдена является молибденит — сульфид молибдена MoSj, на долю которого приходится >98 % мировой добычи и разведанных запасов молибдена. Это мягкий (твердость 1—1,5) минерал блестящий свинцово-серого цвета, по внешнему виду похожий на графит, но вдвое тяжелее его (плотность 4,7—5,0 г/см ). Чистый минерал содержит 59,95 % Мо и 40,05 % S. Минералы молибдена рассеяны и концентрация его в рудах невелика. Промышленной переработке подлежат руды, содержащие 0,2 % Мо (а иногда и менее). Значительное количество молибдена добывают в виде медно-молибденовых руд. Наиболее крупными месторождениями молибдена являются Клаймакс (Колорадо, США), где в руде содержится 0,6 % молибденита, Ла-Корн (Канада), Чугикамата , Бродви (Чили), в СССР  [c.282]

Молибден — металл серебристо-белого цвета. Электронная структура его Is22s22p63s 3pe3d 4s24p84d=5s . Молибден имеет следующие физикохимические свойства атомную массу 95,94 плотность 10,23 г/см температуру плавления 2610°С. Некоторые соединения молибдена и их свойства приведены в табл. 93. В плавке используют в основном оксид  [c.286]

Тантал. Сплавы на основе тантала также технологичны и перспективны как высокопрочные материалы, однако их раз- I работка сдерживается высокими стоимостью и плотностью, а i также дефицитностью. Твердорастворное упрочнение тантала элементами замеш,ения в основном носит такой же характер, как и в сплавах ниобия. Так как вольфрам оказывает более i сильное упрочняюш,ее воздействие, чем молибден, то во все сплавы тантала добавляют 7-10 % W. Сплавы Т-111 I (рис. 19.7) и Т-222 представляют собой легированные гаф- нием модификации сплава Ta-lOW (с углеродом), имеюш,ие приблизительно такую же технологичность. Для эксплуатации >482 °С в окислительной среде танталовые сплавы нуждаются в заш,итном покрытии. Широкое распространение тантал получил в качестве материала для конденсаторов, а в силу высокой коррозионной стойкости в кислотах и других химических реагентах его применяют в соответствуюш,их областях промышленного производства.  [c.312]


При комнатной температуре тугоплавкие металлы имеют высокую коррозионную стойкость, но при высоких температурах, вследствие высокой скорости окисления, недостаточной плотности прилегания к металлу и летучести их окислов они, за исключением хрома, отличаются очень плохой жаростойкостью. Если принять наиболее плохую жаростойкость (сопротивление окислению) молибдена за 1, то соответственно жаростойкость у разных металлов будет у тантала 1,4 у ниобия 2,3 у вольфрама 14 у циркония 27 у титана 54 у хрома 320 у нержавеющей стали 1Х18Н9Т—1600. Поэтому для создания необходимой жаростойкости тугоплавкйе металлы и их сплавы следует применять с защитными покрытиями, а в отдельных случаях создавать у них путем легирования более прочные и менее летучие пленки окислов на поверхности. Способность обрабатываться давлением, резанием, подвергаться сварке, отливке и т. д., т. е. технологичность у тугоплавких металлов, очень низкая, особенно у вольфрама. Поэтому среди тугоплавких металлов наибольшее применение в настоящее время получили молибден и ниобий, технологичность которых сравнительно удовлетворительна.  [c.405]

Ниобий и его сплавы имеют важное значение в электронной и химической промышленности, а сплавы ниобия с оловом являются ценным сверхпроводящим материалом. Большую роль играет рений, его температура плавления 3180 °С, плотность в 3 раза болыпе, чем у железа, он немного легче осмия, платины и иридия. Рений обладает высоким электросопротивлением. Жаропрочность рения с вольфргамом и танталом сохраняется до температуры 3000 °С, сохраняются и механические свойства. Вольфрам и молибден при низких температурах очень хрупки, а в сплаве с рением сохраняют при этих температурах пластичность. Рений используют для производства сверхточных навигационных приборов, которыми пользуются в космосе, для получения торсионов — тончайших нитей, диаметр которых составляет несколько десятков микрометров, обладающих очень высокой прочностью. Проволока сечением в 1 мм выдерживает нагрузку в несколько килоньютонов.  [c.225]


Смотреть страницы где упоминается термин Молибден Плотность : [c.74]    [c.75]    [c.141]    [c.606]    [c.152]    [c.156]    [c.255]    [c.424]    [c.108]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.425 ]



ПОИСК



Молибден

Молибденит



© 2025 Mash-xxl.info Реклама на сайте