Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Момент гироскопический количества движения точки

Так как этот единичный вектор к, по определению, не изменяется в теле, а с другой стороны, в настоящем случае г постоянно и речь идет о движении по инерции, а это значит, что момент К неподвижен в пространстве, то из предыдущего выражения для w мы видим, что угловая скорость есть сумма двух векторов постоянной величины, первый из которых, направленный по К, неподвижен в пространстве, а второй, направленный по к, неподвижен в теле. Этого достаточно для того, чтобы можно было заключить (т. I, гл. IV, п. 15), что всякое движение по инерции- твердого тела с гироскопической структурой относительно закрепленной точки О представляет собой регулярную прецессию, имеющую осью прецессии прямую, параллельную моменту К количеств движения и проходящую через точку О, и осью фигуры — его гироскопическую ось. Обозначим через х единичный вектор (неподвижный в пространстве) момента К и введем характеристические элементы любой регулярной прецессии, т. е. угловую скорость Mj = k, которую можно назвать собственной для твердого тела или гироскопической, угловую скорость щ = пре-  [c.92]


Влияние гироскопических сил на свободные колебания твердого тела с четырьмя степенями свободы. Для составления дифференциальных уравнений малых колебаний твердого тела при наличии гироскопических сил следует применять теорему о движении центра инерции системы материальных точек вместе с теоремой об изменении главного момента количеств движения системы материальных точек в относительном движении по отношению к центру инерции.  [c.624]

Lq, 1 —момент количества движения системы материальных точек относительно центра О, оси Ох Л) — гироскопический момент —главный момент внешних сил относительно центра О, оси Ох т, М — масса точки, системы точек  [c.286]

Рассмотрим теперь три оси х, у, г с началом в О, имеющие ориентированные направления трех единичных векторов t (касательной к траектории вершины в направлении возрастающих s), v (перпендикуляра к / и к оси гироскопа 00, направленного влево для наблюдателя, который, расположен по 00 и смотрит в направлении /), ft (гироскопической оси 00). Проектируя на них уравнение моментов количеств движения относительно точки О, мы получим скалярные уравнения  [c.156]

Гироскопические свойства тела при ударе никак не проявляются изменение момента количества движения твердого тела, имеющего неподвижную точку, под действием ударного импульса имеет  [c.102]

Гироскопический эффект в относительном движении. Новое выражение принципа стремления осей вращения к параллельности. — Предположим, что угловая скорость Гд вращения тела вокруг собственной оси очень велика, так что ее можно считать весьма большой величиной первого порядка, между тем как составляющие р, q, нормальные к оси тела, весьма малы, так же как и вращение 0)5 подвижного тела отсчета. Рассматривая эти количества как малые первого порядка, мы можем считать все члены, входящие в выражения 2, ЛI2, М и за исключением первого члена выражения малыми величинами второго порядка. Если пренебречь малыми членами второго порядка, то результирующий момент фиктивных сил, которые прикладываются к телу в относительном движении, приводится только к моменту относительно оси 0x2, имеющему приближенное значение  [c.177]

Динамика твердого тела изучается на основе общих теорем об изменении кинетической энергии, кинетического момента и количества движения, а также с помощью основных понятий геометрии масс. Показывается, что аппарат динамики системы материальных точек применим для описания движения твердого тела и систем твердых тел. Проясняется вычислительная экономность использования уравнений Эйлера. Традиционно анализируются случаи Эйлера-Пуансо, Лагранжа-Пуассона, Ковгияевской [24]. В качест)зе примера методики по.чучения частных случаев интегрируемости приводятся случаи Гесса и Бобылева-Стеклова [6]. С целью демонстрации приложения развитых методов к практике даются основы элементарной теории гироскопов [14, 41], достаточные для качественного анализа действия гироскопических приборов.  [c.12]


Динамика системы материальных точек сначала излагается для случая, когда движение стеснено произвольными дифференциальными связями. Из принципа Даламбера-Лагранжа (общее уравнение динамики) с использованием свойств структуры виртуальных перемещений [68] выводятся общие теоремы динамики об изменении кинетической энергии (живой силы), кинетического момента (момента количеств движения), количества движения. Изучается динамика системы переменного состава [1]. На основе принципа Гаусса наи-меньщего принуждения выводятся уравнения Аппеля в квазикоординатах. Получены также уравнения Воронца и, как их следствие, уравнения Чаплыгина. Установлено, что воздействие неголономных связей включает реакции, имеющие гироскопическую природу [44].  [c.12]

Эти уравнения имеют типичную гироскопическую структуру. Как и в уравнения (48) движения гиротахоакселерометра, в уравнение, содержащее а (уравнение для координаты а), входит произведение обобщенной скорости р и проекции /зоь главного момента количеств движения на ось гироскопа в уравнение для координаты р также входит гироскопический член — произведение множителя /зЮг на обобщенную скорость, соответствующую другой координате а, но взятое с противоположным знаком. Гироскопическую структуру имеют уравнения (51) 167 относительно движения тяжелой точки на вращающейся Земле, в которых роль гироскопических членов выполняют слагаемые, происходящие от кориолисовой силы инерции. Таковы же уравнения (60) 169 колебаний маятника Фуко.  [c.624]

Теория гироскопических приборов и гироста-билиааторов естественно не ограничивается изложением только физической стороны рассмотрения движения гироскопов. В основе изложения теории гироскопов и гироскопических стабилизаторов лежит аналитическое исследование дифференциальных уравнений движения гироскопов. Дифференциальные уравнения движения гироскопов составляются либо с помощью обобщенных уравнений Эйлера, либо на основе Лагранжевых дифференциальных уравнений движения. Кратчайший путь для составления обобщенных уравнений Эйлера достигается применением теоремы моментов количества движения в той ее форме, которую иногда называют теоремой Резаля.  [c.32]

Как следует из обобщенной теоремы площадей Чаплыгина (см. 1 гл. II), вектор момента количеств движения системы относительно точки опоры А постоянен. Убедимся в этом непосредственно. Обозначим через вектор длиною Срсо, направленный по оси гироскопа, и через Ьх, Ьуу — его проекции на оси координат. Пусть X и У — проекции на оси Ах и Ау силы трения (реакции идеальной неголономной связи), развивающейся в точке А опоры гироскопического шара о плоскость. Напишем уравнения движения центра масс и закон изменения момента количеств движения системы относительно центра масс в проекциях на оси координат Ахуг  [c.69]


Смотреть страницы где упоминается термин Момент гироскопический количества движения точки : [c.631]    [c.410]   
Справочник машиностроителя Том 1 Изд.3 (1963) -- [ c.396 ]

Справочник машиностроителя Том 1 Изд.2 (1956) -- [ c.386 ]



ПОИСК



Гироскопический

Количество движения

Количество движения точки

Момент гироскопический

Момент гироскопический точки

Момент количеств движения

Момент количества движени

Момент количества движения точки

Точка — Движение



© 2025 Mash-xxl.info Реклама на сайте