Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Твердость и хрупкость

Белый чугун. Такое название он получил по виду излома, который имеет матово-белый цвет. Структура белого чугуна (при нормальной температуре) состоит из цементита и перлита. Следовательно, в белом чугуне весь углерод находится в форме цементита, степень графитизации равна нулю. Белый чугун обладает высокой твердостью и хрупкостью, практически не поддается обработке режущим инструментом.  [c.209]


В отличие от сплавов системы Fe—С эвтектоидная смесь в титановых сплавах обладает повышенной твердостью и хрупкостью, тогда как титановый мартенсит (a j невысокой твердостью и пластичностью и мало отличается по свойствам от исходной Р-фазы.  [c.514]

В качестве магнитно-мягкого материала применяют низкоуглеродистые (0,05— 0,005 % С) железокремнистые сплавы (0,8—4,8 % Si). Кремний, образуя с железом твердый раствор, сильно повышает электросопротивление, а следовательно, уменьшает потери на вихревые токи, повышает магнитную проницаемость, немного снижает коэрцитивную силу и потери на гистерезис. Однако кремний понижает магнитную индукцию в сильных полях и повышает твердость и хрупкость стали, особенно при содержании 3—4 %.  [c.309]

Находящийся в решетке у-Ре в том же количестве, что и в аустените, С существенно искажает решетку, ибо а-Ре практически его не растворяет. Поэтому мартенсит обладает повышенной прочностью, твердостью и хрупкостью. Мартенсит магнитен и отличается игольчатым строением (рис. 8,7,а). Он неустойчив и способен к самопроизвольному распаду (особенно при повышенных температурах).  [c.95]

Мартенситные нержавеющие стали имеют наилучшую коррозионную стойкость после закалки из аустенитной области. В этом состоянии они обладают высокой твердостью и хрупкостью. Пластичность повышается при отжиге  [c.301]

Черные металлы, содержащие более 2% углерода, называются чугунами. В зависимости от структуры все чугуны делятся на белые и серые. Белые чугуны обладают высокой твердостью и хрупкостью, плохо обрабатываются, поэтому детали из них изготовляют преимущественно литьем. Кроме того, белые чугуны используют как материал для производства других сортов чугуна и сталей.  [c.158]

В заключение подчеркнем, что наиболее характерная черта ковалентной связи—ее сильная направленность в пространстве, т. е. она образуется в тех направлениях, в которых локализуется электронная плотность. Вследствие направленности связи ковалентные кристаллы обладают высокой твердостью и хрупкостью.  [c.81]

Для мартенсита типична игольчатая микроструктура, высокие твердость и хрупкость. Скорость образования  [c.117]

Ферритовые спеченные изделия отличаются высокой твердостью и хрупкостью. Механическую обработку ферритов можно производить абразивным инструментом из синтетических алмазов или выполнить операции — резку, шлифовку и полировку.  [c.102]

Присутствие Mg даже в сотых долях процента повышает предел прочности, предел текучести, твердость и хрупкость.  [c.59]


Эти тугоплавкие соединения отличаются высокой температурой плавления, твердостью и хрупкостью. Силициды менее тугоплавки и тверды, чем карбиды, бориды и нитриды.  [c.606]

Рутений менее дефицитен, чем платина и родий, и значительно дешевле как видно из табл. 31, рутений имеет наибольшую твердость и температуру плавления, он легко пассивируется на воздухе и очень хорошо противостоит действию агрессивных сред. На него не действуют разбавленные и концентрированные кислоты и щелочи. Рутений стоек к воздействию соединений фосфора и азота, в ряде случаев он превосходит по химической стойкости палладий, родий и платину он более устойчив к воздействию серы. Пленки сернистых соединений, образующиеся на поверхности, отрицательно сказываются на переходном электрическом сопротивлении. При обычных и повышенных температурах на воздухе и в среде, богатой кислородом, рутений не тускнеет и сохраняет блеск, что позволяет использовать его при покрытии отражателей. Рутений в отличие от платины и палладия не поглощает водорода и не образует гидридов. Несмотря на хорошие физико-механические свойства рутений недостаточно широко используется в промышленности. Одной из причин этого является сложность изготовления деталей из рутения вследствие высокой температуры плавления, высокой твердости и хрупкости. Рутений подвергается высокотемпературному окислению, как и родий образующаяся окисная пленка обладает хорошей электропроводностью.  [c.76]

Альсиферы — сплавы железа с кремнием и алюминием. Оптимальный состав альсифера 9,5 % Si, 5,6 % А , остальное Fe. Такой сплав отличается твердостью и хрупкостью, но из него могут быть изготовлены фасонные отливки. Основные свойства альсифера  [c.280]

Изучение высокотемпературной микротвердости тугоплавких соединений связано с определенными методическими трудностями, обусловленными высокой твердостью и хрупкостью этих материалов при комнатных и повышенных температурах. На результаты измерения микротвердости влияет ряд факторов, связанных со свойствами используемого материала и особенностями применяемого для исследования прибора.  [c.70]

Чугун, как известно, — это сплав железа с углеродом при содержании углерода 2,14 % и более. В белом чугуне углерод входит в состав цементита химического соединения железа с углеродом. Такой чугун обладает высокой твердостью и хрупкостью, и его применяют сравнительно редко. В чугуне других видов путем графитизации углерод частично или полностью переводят в свободное состояние — графит. Применяют также отбеленный чугун белый снаружи и графитизированный во внутренней части изделия.  [c.434]

Эти реакции продолжаются до окончания процесса, поддерживая концентрацию галоида и способствуя удалению продуктов реакции из реактора. Когда хром диффундирует в сталь, микроструктура по форме превращается в ферритную. Покрытия обычно имеют столбчатую микроструктуру и совмещают свойства сопротивления окислению и действию коррозии с повышенной сопротивляемостью износу. Диффузионные покрытия из кремния обладают устойчивостью к воздействию кислоты и окислению, твердостью и хрупкостью.  [c.105]

Перлитные чугуны имеют значительно более высокую Износоустойчивость при трении, чем ферритные. Серый чугун с перлитной структурой является наиболее износоустойчивым материалом, обладающим высокими литейными (низкая температура плавления, высокая жидкотекучесть) и механическими (хорошая обрабатываемость, высокое сопротивление истиранию) качествами. Лучшие результаты показывают чугуны с перлитом тонкого сорбитообразного строения, с мелкими завихренными графитовыми выделениями и твердым компонентом — цементитом пли фосфид-ной эвтектикой, равномерно распределенной и не образующей сплошной цепочки, придающей чугуну повышенную твердость и хрупкость. Чем грубее структура перлита, тем хуже сопротивляемость чугуна истиранию. Ковкий чугун, имеющий повышенное содержание углерода и пониженное содержание кремния, обладает повышенной механической прочностью.  [c.573]

Обладает высокой температурой плавления, высокой твердостью и хрупкостью. Не поддается обработке резанием обычными способами, резание производится абразивными кругами (в основном алмазными). Возможна обработка шлифованием  [c.350]

Характерными свойствами керамических материалов является достаточная прочность, жаро- и кислотостойкость, износостойкость и твердость и др. Вследствие высокой твердости и хрупкости керамические материалы слабо подда-  [c.396]


Карбид кремния — химическое соединение кремния с углеродом — обладает большей твердостью и хрупкостью, чем электрокорунд. Карбид кремния бывает зеленый (КЗ), имеющий цвет от светло- до темно-зеленого, и черный (КЧ) — обычного черного и темно-синего цвета.  [c.282]

Фосфор оказывает весьма существенное влияние на структуру и свойства чугуна. Для получения чугуна с высокими пластическими свойствами содержание фосфора не должно превышать 0,08%, в противном случае в структуре чугуна образуется значительное количество тройной фосфидной эвтектики, обладающей высокой твердостью и хрупкостью, вследствие чего пластические свойства чугуна значительно  [c.154]

Мартенсит представляет собой пересыщенный твердый раствор углерода в а-железе. Особенностью мартенсита являются высокая твердость и хрупкость. Превращение аустенита в мартенсит сопровождается увеличением объема, что является основной причиной возникновения а закаленной стали больших внутренних напряжений, которые могут  [c.126]

Механические свойства титана существенно зависят от степени его чистоты. Примесь кислорода, азота или углерода сообщает титану высокую твердость и хрупкость. Так, присутствие в титане 0,5% кислорода  [c.303]

Карбид бора — соединение бора с углеродом, отличается высокими твердостью и хрупкостью, применяется в виде порошков и паст для шлифования и доводки изделий из твердых материалов. Абразивные материалы характеризуются зернистостью, формой абразивных зерен, твердостью, механической прочностью, абразивной способностью.  [c.229]

Си с А1 образует ограниченные твердые растворы и химическое соединение СнА12, обладающее высокой твердостью и хрупкостью. В сложных алюминиевых сплавах Си входит в состав тройных соединений. В деформируемых алюминиевых сплавах содержание Си не превышает 7%, а в литейных — 8%. Для таких сплавов Си — основной легирующий элемент, обеспечивающий высокие механические свойства после термической обработки однако Си ухудшает антикоррозионную стойкость алюминиевых сплавов.  [c.321]

В белом чугуне весь углерод находится в виде химического соединения углерода с железом — цементита РвзС, который придает чугуну высокую твердость и хрупкость. Поэтому в конструкциях белый чугун не используют.  [c.128]

Карбиды, образованные легирующими элементами, обладают высокой твердостью и хрупкостью. Однако по отнощению к карбиду железа РезС они являются менее хрупкими и более твердыми.  [c.73]

Литые сплавы обладают достаточной устойчивостью против старения. По результатам ряда исследований естественное магнитное старение магнитных литых сплавов зависит от следующих факторов 1) оно усиливается с уменьшением длины магнита при данном поперечнике 2) старение усиливается от частичного размагничивания переменным магнитным полем.Сплавыжелезо—никель—алюминий и особенно железо — никель — алюминий — кобальт отличаются сравнительно высокой стоимостью. Механической обработке в виде грубой обдирки резанием с применением резцов из твердого сплава поддаются только детали простой формы из сплавов, не содержащих кобальта. Кроме того, детали из всех сплавов можно шлифовать электрокорундовыми кругами в два приема (грубое и чистовое шлифование). Для грубого шлифования можно применять электроискровую обработку. Перед механической обработкой можно применять отжиг для уменьшения твердости и хрупкости.  [c.310]

Альсифер — тройной сплав, состоящий из алюминия, кремния и железа. Сплав оптимального состава (9,6 % Si, 5,4 % А1, остальное Fe) по своим свойствам не отличается от пермаллоев и имеет следующие характеристики Цгн = 35 500, p-rmax = 120 ООО, — = 18 А/м, р = 0,8 мкОм-м. Такие характеристики получаются только при строгом соблюдении состава, промышленные образцы имеют более низкие характеристики. Альсифер получают как литой, нековкий материал, с высокой твердостью и хрупкостью, поэтому изделия из альсифера изготовляются методом литья с толщиной стенок не менее 2—3 мм. Область применения альсифера — магнитные экраны, корпуса приборов машин, детали магнитопроводов для работы в постоянных или медленно меняющихся магнитных полях. Вследствие того что альсифер хрупок, его можно размалывать в порошок и применять для изготовления прессованных сердечников и магнитодиэлектриков.  [c.97]

Чистый германий обладает металлическим блеском, характеризуется относительно высокой твердостью и хрупкостью. Он кристаллизуется в структуре алмаза, плавится при температуре 937 С. плотность при 25 °С равна 5.33 г/см . В твердом состоянии германий типичный ковалентный кристалл. Кристаллический германий химически устойчив иа воздухе при комнатной температуре. Размельченный в порошок германий при нагревании на воздухе до температуры 700 °С легко образует диоксид германия GeOj. Германий слабо растворим в воде и практически нерастворим в соляной и разбавленной серной кислоте. Активными растворителями германия в нормальных условиях является смесь а,зотной и плавиковой кислот и раствор перекиси водорода. При нагревании германий интенсивно взаимодействует с галогенами, серой и сернокислыми соединениями.  [c.284]

Чугуны. Чугунами называются железоуглеродисаые сплавы, содержащие больше 2% углерода. Они обладают хорошими литейными свойствами и худшими, по сравнению со сталями, пластическими свойствами. В зависимости от структуры чугуны делятся на белые (по цвету шлифа), ковкие и серые. Белые чугуны обладают высокой твердостью и хрупкостью, плохо обрабатываются резанием и поэтому применяются лишь для изготовления деталей литьем. Ковкие чугуны обладают высокой пластичностью, хорошей обрабатываемостью, имеют большую плотность. Стоимость изготовления деталей из этих чугунов на 30—100% превышает стоимость изготовления деталей из серого чугуна.  [c.211]


Степень полимеризации в большей мере определяется условиями полимеризации. При специальных условиях возможно получение полимеров с молекулярным весом до 600 ООО и даже выше. Но такие высокомолекулярные полимеры для технического применения не всегда пригодны из-за их вязкости и большой твердости и хрупкости. Практическое применение находят полистиролы с молекулярным весом от 40 ООО до 150 ООО. Деполимеризация полистирола с молекулярным весом до 100 ООО обычно наступает при нагреве его до 300 °С. Деполимеризация же полимеров с молекулярным весом выше 100 ООО наступает уже при 180° С. Электрические свойства полистирола, в особенности его диэлектрические потери, зависят от метода полимеризации. Несмотря на то, что эмульсионный метод имеет ряд технологических преимуш,еств перед методом блочной иолимеризацпи, все же из-за присутствия остатка эмульгатора в полистироле, электрические свойства его, вследствие наличия полярных примесей, становятся ниже. Для повышения электрических свойств необходима тщательная отмывка эмульгатора.  [c.73]

Сплавы называют изотропными, так как их магнитные свойства одинаковы, независимо от направления намагничивания. Основными материалами этой группы являются сплавы на основе алюминия, никеля, меди и железа. Эти сплавы отличаются высокой твердостью и хрупкостью, даже в горячем состоянии они не поддаются ковке и прокатке, магниты из них изготовляют литьем или прессованием из порошков. Получение высокой коэрцитивной силы связано с механизмом дисперсионного твердения. При определенных условиях охлаждения сплава появляются две фазы слабомагнптный твердый раствор железа и алюминия (Р -фаза) и однодоменные частицы почти  [c.264]

Необратимое ухудшение качества изоляции лишь при длительном воздействии повышенной температуры вследствие медленно протекающих химических процессов называется тепловым старением изоляции. Старение может проявляться, например, у лаковых пленок и целлюлозных материалов в виде повышения твердости и хрупкости, образования трещин и т. п. Дл япроверкн стойкости электроизоляционных материалов к тепловому старению образцы этих материалов длительно выдерживают при сравнительно невысокой температуре, не вызывающей немедленного разрушения материала, а затем их свойства сравнивают со свойствами исходного материала. При прочих равных условиях скорость теплового старения органических и элементоорганических полимеров значительно возрастает с повышением температуры, подчиняясь общим закономерностям температурного изменения скорости химических реакций (теория Аррениуса—Эйринга). Продолжительность старения т (считая, например, от момента начала снижения механической прочности до момента получения заданной доли ее начального значения) связана с температурой старения Т следующей зависимостью  [c.81]

Процесс нанесения покрытия химическим путем является дорогостоящим, но позволяет обеспечить совершенно одинаковую толщину осадка, независимо от сложности конфигурации обрабатываемого изделия. В случае использования никелевых покрытий включение фосфора или бора в осадке увеличивает твердость и хрупкость, влияет на коррозионную стойкость. Эти свойства осадка никеля могут изменяться при последующей термической обработке. Адгезия осадков зависит от химической связи, а также от механического сцепления с грубообработан-ной поверхностью. Химического соединения с основным металлом не происходит до тех пор, пока не возникает диффузии под действием термической обработки после нанесения покрытия химическим методом.  [c.84]

Из-за высокой температуры плавления, высокой твердости и хрупкости окислов получение оксидных покрытий представляет известную трудность. Наиболее распространенный метод получения оксидных покрытий — плазменное напыление. Высокая температура плазменной струи (до 10000 К) позволяет получать покрытия из самых ннзкоплавких окислов, нитридов и карбидов.  [c.158]

Механическая обработка. Все виды РЗМ обладают высокой твердостью и хрупкостью. По твердости (HR 54— 56) они приближаются к сплавам аль-нико ЮНДК35Т5, а по хрупкости их превосходят.  [c.97]

Сплавы железа с хромо.м марок Х13Ю4 — фехраль, Х25Ю5 — хромель и другие этого типа также имеют высокое электрическое сопрот1шление, но они менее жаростойки, чем нихромы, и менее технологичны из-за твердости и хрупкости при изготовлении проводов малых сечений. Сплав фехраль имеет сравнительно высокий температурный коэффициент электрического сопротивления, в 2—3 раза больший, чем у нихрома и хромеля, что является его недостатком. Эти сплавы являются ценным материалом для изготовления грубых реостатов и нагревательных элементов в мощных электронагревательных установках и промышленных печах.  [c.255]

Обладает хорошими литейными свойствами, прекрасно заполняет форму при отливке. Поддается прокатке при комнатной температуре, может быть прокатан в тонкие листы. Может изготовляться в виде фольги прессованием расплавленного галлия между нагретыми листами стекла. Имеет повышенные твердость и хрупкость при температуре, близкой к точке плавления. Удар и сильный перегиб приводят к хрупкому разрушению, благодаря чему галлий обладает пониженой ковкостью  [c.344]

Иридий 1г (Iridium). Серебристо-белый металл, обладает большой твердостью и хрупкостью. Распространенность в земной коре 1 10 % i = 2350 , t un > > 4800 С плотность 22,5. В растворимое состояние переводится сплавлением со щелочами. Применяется в виде сплавов с платиной, отличающихся исключительной стойкостью к химическим воздействиям. Подобный сплав (90 /о Pt и 10% 1г) использован для изготовления международных эталонов мер и веса. Чрезвычайно высокой твердостью и износостойкостью (сопротивлением истиранию) обладают сплавы иридия с осмием они используются для изготовления ответственных деталей точнейших часовых механизмов и приборов.  [c.387]

Наклепанная сталь имеет вытянутые в направлении деформации зерна и обладает высокой прочностью, твердостью и хрупкостью при пониженной пластичности (табл. 73), что не позволяет вести дальнейшую холодную штамповку, холодную прокатку, волочение. Рекристаллизационный отжиг производят для восстано-  [c.112]

Высококремнистые стали (14—18% Si), используются в качестве кислотоупорного материала. Они известны под названием ферроси-лидов, обладают высокой коррозионной стойкостью, твердостью и хрупкостью. Ценные фиЗйко-механические свойства имеют никелевые стали. Хромистые.хтали. характеризуются высокой прочностью, устойчивостью против истирания, окисления и т. п. i  [c.18]

Карбпд бора — соединение бора с углеродом, отличается высокими твердостью и хрупкостью применяется в виде порошков и наст для шлифованпя и доводки изделий из твердых материалов.  [c.258]


Смотреть страницы где упоминается термин Твердость и хрупкость : [c.268]    [c.11]    [c.389]    [c.132]    [c.234]    [c.18]    [c.272]   
Смотреть главы в:

Упрочнение деталей борированием  -> Твердость и хрупкость



ПОИСК



Хрупкость



© 2025 Mash-xxl.info Реклама на сайте