Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нагрузки, допустимые для проводов

Нагнетатели центробежные 59 Нагрузки, допустимые для проводов и кабелей с резиновой изоляцией 35  [c.544]

Номинальные токи плавких вставок предохранителей и токи автоматических выключателей следует выбирать возможно минимальными. По правилам устройства электроустановок защитные аппараты по отношению к допустимым длительным токовым нагрузкам на проводах должны иметь кратность а) номинального тока плавких вставок не более чем в 3 раза б) номинального тока расцепителя (автоматические выключатели) с нерегулируемой обратно пропорциональной от тока характеристикой — не более чем в 1,5 раза в) тока трогания расцепителя с регулируемой обратной пропорциональной от тока характеристикой — не более чем в 1,5 раза г) тока срабатывания автоматического выключателя, имеющего только мгновенно-максимальный расцепитель (отсечку), не более чем в 4,5 раза. В тех случаях, когда питающая сеть по ПУЭ [10] требует обязательной защиты (например, пожаро- и взрывоопасные помещения), плавкие вставки предохранителей или расцепители автоматов выбираются по расчетному току нагрузки. Провод должен быть выбран такого сечения, чтобы длительная нагрузка, допустимая для него, была не менее 125% от номинального тока выбранного защитного аппарата.  [c.182]


Расчётный ток 1р не должен превосходить наибольший допустимый по нормам для длительного включения. Допустимые нагрузки для проводов, троллеев и кабелей и данные для выбора плавких вставок помещены в Правилах устройства электроустановок промышленных предприятий" [5].  [c.854]

Б. Планирование испытаний на уход параметров. Испытания на уход параметров обычно продолжаются 1000—1500 час и проводятся на всех элементах каждой партии. Периодичность включения — выключения такая же, как и при нормальной работе. Электрическую нагрузку и температуру предпочтительнее устанавливать на уровнях, предельно допустимых для элементов. Испытания при средних уровнях нагрузки дают меньше информации однако иногда такие менее жесткие условия более предпочтительны из-за опасности разрушения элементов. Испытания на уход параметров, между прочим, можно использовать и для определения диапазона предельно допустимых нагрузок.  [c.248]

Ориентируясь на формулу долговечности, можно составить программу форсированных испытаний, которые достаточно точно определяет срок службы гидромашины при любом режиме. При форсированных испытаниях желательно установить в гидросистеме максимально допустимое для данной гидромашины давление и число оборотов с тем, чтобы сократить продолжительность испытаний. Так, если давление составляет 150% от номинального и скорость вращения также 150% от номинальной, то, судя по приведенной выше формуле, продолжительность испытаний сокращается в 5—6 раз. Если же испытывается, например, высокомоментный гидромотор многократного действия, у которого долговечность определяется сроком службы подшипников траверс, испытания можно проводить на стенде, показанном на рис. 85, с давлением в обоих трубопроводах, что еще сократит срок испытаний примерно в 2 раза. Поскольку при форсированном режиме все элементы гидромашины работают с повышенной нагрузкой, успешное их испытание гарантирует надежную работу при номинальной нагрузке.  [c.188]

Комплексные приемо-сдаточные испытания проводят вхолостую (на воздухе) в течение 24 ч. Электрический режим работы агрегатов должен быть максимально возможным, но не превышать допустимой для высоковольтных трансформаторов токовой нагрузки.  [c.393]

В сталях этой группы для повышения вязкости и износостойкости, а также уменьшения деформации целесообразно сохранять значительное количество остаточного аустенита (до 20— 25%). Однако уменьшение твердости инструмента, работающего со значительными ударными нагрузками, допустимо только до HR 45—48, а работающего при меньших динамических нагрузках — до HR 55—57. Необходимое количество аустенита высокой устойчивости (до минус 40—60 С) при твердости HR 48—55 получают даже в сечениях 50—60 мм при использовании изотермической закалки. Изотермическую закалку в горячих средах проводят при 250—300 С (выше Л1н)- Для получения твердости HR 55—50 достаточна выдержка 30— 40 мин (табл. 49).  [c.649]


Допустимые длительные Токовые нагрузки на установочные, монтажные провода, кабели и соединительные шнуры определяются ПУЭ. Сведения о них приведены в таблице 3.10 для проводов с медными жилами в таблице 3,11 для проводов с алюминиевыми жилами в таблице 3.12 — допустимые длительные токовые нагрузки на шнуры переносные, переносные гибкие шланговые легкие средние и тяжелые кабели, шланговые прожекторные и переносные провода с медными жилами.  [c.41]

Допустимые длительные токовые нагрузки на неизолированные провода зависят от условий их эксплуатации, места их прокладки и т. д. Они определены ГОСТом 839-80 и регламентируются ПУЭ [4]. Эти данные для медных (М), алюминиевых (А) проводов, а также наиболее широко распространенных сталеалюминиевых проводов марки АС сечением от 10 до 700 мм приведены в табл. 2.10.  [c.75]

Сведения о них приведены в табл. 2.46 — для проводов с медными жилами, в табл. 2.47 — для проводов с алюминиевыми жилами, в табл. 2.48 — допустимые длительные токовые нагрузки на шнуры переносные, переносные гибкие шланговые легкие средние и тяжелые кабели, шланговые прожекторные и переносные провода с медными жилами  [c.113]

Длительно допустимые нагрузки для проводов с резиновой или полихлорвиниловой изоляцией с алюминиевыми жилами  [c.113]

При жидком шлакоудалении экспериментатору должна быть известна вязкостная характеристика шлака и допустимый нижний уровень температуры факела над леткой по условиям надежного выхода жидкого шлака. Температура над леткой контролируется в течение всех опытов оптическим пирометром. При наличии рециркуляции дымовых газов ее следует увеличивать при нагрузке котла, для которой имеет место снижение температуры промперегрева. Опыты продолжают при новой подаче газов рециркуляции. В этих опытах проводят контрольные измерения температурного режима поверхностей нагрева по тракту рабочей среды.  [c.111]

Наибольшие допустимые нагрузки для проводов и кабелей — в правилах устройства электроустановок (ПУЭ).  [c.485]

Сечения проводов должны быть также достаточными для распределения нагрузки по отдельным участкам без их перегрева, что недопустимо по условиям пожарной безопасности. Учитывая сказанное, расчет осветительных нагрузок ведется по потерям напряжения и по допустимому нагреву проводов.  [c.133]

Токовые нагрузки на неизолированные провода приняты из расчета допустимой < их нагрева -1-70°С при I воздуха +25 С. Для алюминиевой проволоки АТ.  [c.284]

В табл. 6.5.13-6.5.17 приведены значения допустимой длительной силы тока для различных проводов и кабелей [11]. Указанные нагрузки приняты для температуры жил +65°, окружающего воздуха +25°, земли +15 °С.  [c.945]

Из условия нагрева для проводов цепи стартера, нагрузка которого большим током имеет лишь кратковременный характер, можно допускать довольно высокое значение электрической нагрузки на единицу площади поперечного сечения (20 а1м.м ). Для других проводов эта величина не должна превосходить 4,5—5,5 а мм . При очень длинных проводах необходимо заботиться о том, чтобы падение напряжения в них оставалось в допустимых пределах и не могло вредно отразиться на работе соответствующих потребителей.  [c.366]

Защита проводов от токов к. з. осложняется большим интервалом мощностей электродвигателей механизмов в пределах одного крана. В соответствии с правилами устройства электроустановок защитные аппараты должны быть рассчитаны на ток срабатывания не выше 450% продолжительного тока защищаемой цепи. Этими же правилами для проводов и кабелей, работающих с повторно-кратковременной нагрузкой, допустимый по нагреву ток определяется выражением  [c.122]

Если температура провода поднимается выше определенного предела, зависящего от материала его изоляции, последняя начинает обугливаться или даже тлеть, чтс может явиться причиной пожара. Предельная допускаемая температура нагрева проводов составляет 55 для проводов с резиновой изоляцией. Если наивысшая температура окру жающего воздуха составляет 30 , то максимально-допустимое повышение температуры равно 25°. Предельные нагрузки (токи) для разного рода проводов приведены в табл. 1.  [c.137]

Даже для простых структур желательно иметь вычислительные алгоритмы. Определение деформаций и напряжений и их преобразование к главным осям слоя осуществляется, как и ранее, по стандартной схеме. Ввиду того, что деформации распределяются по толщине неравномерно, построение предельной поверхности в общем случае невозможно. Послойный анализ целостности слоев, согласно расчету по максимально допустимым или предельным нагрузкам, проводится так же, как и ранее. Вычисления, связанные с последовательным анализом нарушения сплошности слоев до разрушения материала, непригодны для ручного счета. Более подробный численный анализ можно найти в работе [2], а также в руководстве [1] (раздел 2.1).  [c.98]


Для практического применения используют различные электроды сравнения в зависимости от среды и функционального назначения. При этом необходимо учитывать в частности следующее 1) постоянство потенциала электрода сравнения во времени 2) сопротивление растеканию и допустимую токовую нагрузку 3) стойкость по отношению к компонентам коррозионной среды и атмосферным воздействиям, а также совместимость с системой, в которой должны проводиться измерения.  [c.85]

Испытания для определения предельных значений q я v композиций па основе фторопласта-4 целесообразно проводить с образцами в виде колодок. Если их проводят с образцами в виде втулок, то испытание должно быть более длительным, чтобы мояшо было пренебречь приработкой. Испытания следует проводить при постоянных нагрузках и скорости скольжения в данном испытании до достижения предельно допустимой температуры. Данные таких испытаний при разных нагрузках и скоростях скольжения  [c.107]

Выбор сечений заземляющих проводов по условиям их нагрева для установок напряжением до 1000 в с изолированной нейтралью производится из условий наибольшей длительно-допустимой нагрузки фазных проводов допустимая нагрузка заземляющих магистралей должка составлять не менее 50% допустимой  [c.743]

Для того чтобы частота менялась лишь в допустимых пределах измерения проводят при двух или трех положениях синхронизатора. Малую нагрузку набрасывают и снимают при выведенном синхронизаторе, большую — при введенном и т. д. Из этих опытов получают два или три (рис. 6-6,а, б, в) участка общей характеристики. Из-за различной величины ступеней изменения нагрузки профили характеристики очерчены не всегда точно. Предполагая, что синхронизатор лишь смещает характеристики, переносят участки с одной ветви на другие и строят общие характеристики, так как это показано на рис. 6-6,6.  [c.144]

Сведения о неизолированных и изолированных проводах для воздушных ЛЭП и гибких неизолированных проводах читатель найдет также в [1,2,3, 5, 6, 7]. Сведения о длительно допустимых токовых нагрузках на эти виды проводов приведены также в [4].  [c.28]

В течение ряда десятилетий российские кабельные заводы производят поставки для внутреннего рынка и на экспорт различных типов неизолированных проводов по ГОСТ 839-80. допустимые токовые нагрузки для которых представлены в табл. 7.19 1177].  [c.358]

В случае про1 ладки проводов в пучках и закрытых желобах с числом проводов в одном пучке от 5 до 10 допустимая нагрузка на провод снижается на 25 %, при большем числе проводов в одном пучке -на 30—40 % по сравнению с токовой нагрузкой, допустимой для одиночного провода при прочих равных условиях.  [c.386]

Эти данные приведены в табл. 22, 24 и 2г>. Допустимые нагрузки для проводов определены исходя из температуры окружающего воздуха 2п° С. Предельно допустимая температура проводов и кабелей принята равной С. Если температура окружающего воздуха в месте прокладки проводов пли кабелей превы-liiaei 2Г) С, допустимые нагрузки их исчисляются с учетом коэффициентов, указанных в табл. 23.  [c.350]

Допустимые нагрузки проводов, кабе лей, шин, троллеев. Эти данные при ведены в табл. 5—9. Допустимые на грузки для проводов и кабелей с рези новой и полихлорвипиловой изоляцией определены исходя из температуры окружающего воздуха 25° С. Предельно допустимая температура этих проводов и кабелей принята равной 55° С. Для кабелей с бумажной изоляцией предельная температура их при нагрузке указана в таблицах.  [c.531]

Длительно допустимые нагрузки для проводов с резиновой или поли-хлорвиииловой изоляцией и шнуров с резиновой изоляцией с медными  [c.112]

Согласно нормам SAE — Нормы токовых нагрузок длй проводов — для грузовых автомобилей, автомобилей-тягачей, прицепов, автобусов наибольшая длительно допустимая сила тока для провода с резиновой и термопластовой изоляцией, проложенного в пучке из семи проводов, причем один только провод несет максимальную нагрузку, приведена в табл. 67. В случае, если все семь проводов в пучке нагружены максимальной силой тока, данные в табл. 67 должны быть снижены до 60% от указанных.  [c.135]

Допустимые нагрузки для проводов сварочной цепи марки ПРГД при ПВ=65% и те.мпературе окружающей среды 25°  [c.249]

Проводят измерения с помощью измерительного моста сопротивлений резисторов ослабления возбуждения, переходных и уравнительных резисторов в цепях возбуждения генераторов. По результатам измерений определяют фактические коэффициенты ослабления возбуждения тяговых двигателей, сравнийают их друг с другом и с номинальными значениями. При обнаружении отклонений, превышающих допустимые, для того чтобы исключить значительную неравномерность в нагрузках тяговых двигателей, регулируют сопротивление шунтирующих резисторов.  [c.281]

Примечания 1. Результаты уточненного расчета позволяют отметить, что и затянутых соединениях приращение нагрузки на болг от дсГ стния внешних сил практически невелико. Решающими для прочности болтои в этом случае остаются напряжения от затяжки, а расчет допустимо проводить по приближенным формулам.  [c.47]

Если в процессе эксплуатации поверхность изделия испытывает значительные нормальные нагрузки или если допустимый износ превышает оптимальную для данной марки стали толщину борид-ного слоя, то после насыщения необходимо проводить термическую обработку таких изделий с целью повышения твердости основы до HV 4,45—5,22 кН/мм . В зависимости от необходимых требований к деталям применяют различные варианты термической обработки, например отжиг+борирование, oтжиг+бopиpoвaниe + зaкaлкa4-j +отпуск, цементация + борирование + закалка(+отпуск.  [c.47]

Сплав 70НХБМЮ открытой выплавки имел состав 0,025% С, 14J% Сг 9,7% Nb 4,7-% Мо 1,1% А1. В процессе изготовления проволочных образцов диаметром 2 мм сплав подвергался ковке, горячему и холодному волочению. Термическую обработку образцов проводили в эвакуированных кварцевых ампулах по двум схемам I — нагрев под закалку, выдержка 30 мин, охлаждение в воде, II нагрев под закалку, выдержка 30 мин, быстрое охлаждение до температуры старения. В тексте в дальнейшем старение после I режима названо старением снизу , а после II режима — Старением сверху . Состояние образцов во всех случаях фиксировалось охлаждением в воде. Структурный объемный состав сплава определяли методом секущих на продольных метадлографических шлифах. Общая длина секущих для одного шлифа при подсчете объемной доли прерывистого распада выбиралась из расчета допустимой ошибки 0,5% и равнялась л среднем 3—4 мм. Химическое травление шлифов проводили в реактиве Марбле. Микро-Твёрдость измеряли на приборе ПМТ-3 при нагрузке 100 гс.  [c.52]


Для отработки подшипников на отдельном стенде необходимо знать усилия на опорах, которые будут иметь место в реальных условиях работы ГЦН. При этом не только проверяют способность его нормально работать при заданных нагрузках и скоростях, но и определяют максимально допустимую нагрузку на под-П1ИПНИК (т. е. коэффициент запаса по отношению к действующей нагрузке), чего при испытании непосредственно в ГЦН сделать, как правило, невозможно. На отдельном стенде удобно проводить работы по оптимизации конструкции подшипника, добиваясь получения максимального значения допустимой нагрузки в заданных габаритах.  [c.231]

Для понторно-кратковременного режима работы с общей иродолжитель-цостью цикла j,o К) мин. и продолжительностью рабочего периода не более 4 мин. наибольшие допустимые нагрузки проводов и кабелей при сечениях до  [c.351]

Для электропроводок щитов, в которых выбор материала жил проводов определен требованиями МСИ 205-69, сечение электрокабеля систем электропитания автоматики котельных определяется по максимально допустимой токовой нагрузке и механической прочности (по справочным таблицам) с последующей проверкой по потерям напряжения. По условиям механической прочности допустимое минимальное сечение для алюминиевых проводов и кабелей должно быть не менее 2,5 мм , для питания электроинструмента (дрелей, щеток и др.) — 1,5 мм . Защитные оболочки (изоляция) и внешнее покрытие выбираются в соответствии с условиями о( ружающей среды п с учетом способа прокладки электропроводки. При этом  [c.168]

Эксплуатационные испытания тяго-дутьевых машин проводятся при работающем котле и существующих в котельной способах регулирования. Производительность машин при эксплуатационных испытаниях можно менять только в зависимости от нагрузки котла. Поэтому для составления характеристики работы машины необходимо, чтобы котел работал при разных нагрузках 50, 60, 70, 90 и 110%. В слоевых ручных и механических топках, а также в топках, работающих на газе или жидком топливе, минимально допустимая (из условий устойчивости горения) нагрузка котла может быть принята ниже 40 до 20%.  [c.411]

К середине 60-х годов в области расчета железобетонных конструкций сложилась ситуация, когда усилия в элементах конструкции определялись в линейно-упругой стадии, а прочность отдельных элементов проверялась из условия нелинейной работы железобетона. Для устранения нелогичности такой ситуации вводились различные поправки. Например, учет иерераспределе-ния напряжения проводился за счет некоторого понижения экстермальных усилий или для некоторого класса задач методами предельного равновесия находилась разрушающая нагрузка, а допустимая эксплуатационная нагрузка определялась введением общего понижающего коэффициента. Такие приемы позволяли весьма приближенно учитывать действительную работу железобетона. Причем наиболее важная стадия работы железобетона— эксплуатационная (когда до предельного состояния еще далеко, а нелинейные деформации уже начали развиваться) выпадала из поля зрения. К сожалению, такая ситуация во многом продолжает сохраняться в настоящее время, хотя работы отечественных ученых в последнее десятилетие позволяют надеяться на ее изменение в лучшую сторону. Характерная особенность этих работ—стремление проследить поведение железобетонной конструкции на всем протяжении нагружения, начиная от небольших нагрузок, когда работа системы может считаться еще линейной, включая эксплуатационную стадию, когда влияние нелинейных деформаций уже существенно, и заканчивая стадией,, предшествующей разрушению.  [c.88]

Проводя испытания с программным нагружением, имитирующим полетные нагрузки для узлов авиационных конструкций из алюминиевого сплава, Хаас [677] обнаружил, что срок службы уменьшался по сравнению с нагрузкой, цмеющей постоянную амплитуду, если применялось правило накопления повреждений. Другим будет место разрушения и меньшим разброс сроков службы. Все эти особенности следует иметь в виду, оценивая срок службы при реальных нагрузках и исходя из данных испытания образцов. Допустимы лишь небольшие отличия между программной и действительной нагрузкой. Од- на о, когда требуется прочностная и проектировочная инфор-  [c.415]

Азотированию подвергают легированные стали 38Х2МЮА, 40Х, 40ХН2МА, 18Х2Н4МА и другие, для упрочнения сердцевины которых проводят термическое улучшение. Их выносливость определяется режимом азотирования и возрастает по мере увеличения толщины упрочненного слоя. Вследствие небольшой толщины слоя (0,3 - 0,6 мм), ограничивающей допустимые нагрузки, а также большой длительности процесса азотирование применяют реже, чем цементацию. Ему отдают предпочтение в тех случаях, когда нежелательна деформация деталей при упрочнении или требуется повышение коррозионной стойкости и высокая износостойкость поверхности.  [c.281]

Если процесс сошелся или исчерпано допустимое количество итераций (блоки 10, 11), то в блоке 13 процедурой ROB экстраполируется начальное приближение для следующего значения нагрузки, проводятся необходимые пересылки, печатаются результаты. Затем проверяется, для всех ли нагрузок решена задача (блок 14).  [c.58]

На основе этих уравнений проводился численный эксперимент, который показал, что изложенный здесь алгоритм не при любой нагрузке приводит к допустимому (г(х) > 0) решению. Однако при любых параметрах (тонкой) пластины можно подобрать та-к)гю нагрузку, при которой и превышающей которую выполняется условие односторонности связи (г(х) > 0). На рис. 10.1 показано распределение реакзщй основгшия (см. ниже оси х) при нагрузке qQZ=.q =. 0.01 МПа для пластины со следующими параметрами  [c.268]

Изучение эксплуатации глубоких скважин производится специальными комитетами. В 1955 г. в Калифорнии эксплуатировалось 975 глубоких скважин. В докладе Тихоокеанского комитета [66], изучавшего эксплуатацию глубоких скважин в Калифорнии, приводятся сравнительные данные но различным способам эксплуатации. Комитет не проводил глубокого экономического анализа различных методов эксплуатации, так как фирмы пользуются различными системами учета расходов. Однако обобш,ение полученных им данных позволяет составить некоторое представление об эффективности этих методов. Сформулированы основные факторы, определяющие эффективность работы оборудования в глубоких скважинах 1) к. п. д. оборудования 2) количество и продолжительность подземных ремонтов 3) допустимые нагрузки. Затраты на подземный ремонт увеличиваются почти пропорционально глубине скважины. Для очень глубоких скважин, особенно в отдаленных районах, эти затраты становятся решающим фактором. Из полученных комитетом данных было установлено, что среднее количество подземных ремонтов в скважинах, оборудованных гидропоршневыми насосными агрегатами трубного тина,  [c.299]


Смотреть страницы где упоминается термин Нагрузки, допустимые для проводов : [c.351]    [c.68]    [c.123]    [c.23]   
Справочник машиностроителя Том 2 (1955) -- [ c.0 ]



ПОИСК



Длительно допустимые токовые нагрузки на силовые кабели, провода и шнуры

Длительно допустимые токовые нагрузки проводов неизолированных Зарубежные андтоги

Допустимые длительные токовые нагрузки на неизолированные провода

Допустимые длительные токовые нагрузки на провода, шнуры, кабели и шины

Допустимые длительные токовые нагрузки на установочные, монтажные провода, кабели и соединительные шнуры

Допустимые нагрузки для троллеев, кабелей и проводов

Допустимые токовые нагрузки на установочные, монтажные провода и кабели и соединительные шнуры

Лента стеклянная электроизоляционная (ГОСТ Допустимые нагрузки на провода БПВЛ и БПВЛЭ в зависимости от температуры окружающей среды

Нагрузка проводов

Нагрузки допустимые для шин

Нагрузки, допустимые для проводов для троллеев

Нагрузки, допустимые для проводов кабелей с резиновой изоляцие

Провода Нагрузки допустимые

Провода Нагрузки допустимые

Таблица П.3.1. Наибольшие длительно допустимые нагрузки проводов

Ток допустимый



© 2025 Mash-xxl.info Реклама на сайте