Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Подъемная сила лопасти и сила тяги несущего винта

ПОДЪЕМНАЯ СИЛА ЛОПАСТИ И СИЛА ТЯГИ НЕСУЩЕГО ВИНТА  [c.25]

Несущий винт должен эффективно создавать силу тяги, равную весу вертолета. Под эффективностью вертикального полета понимается малая величина отношения мощности, потребляемой несущим винтом, к создаваемой им силе тяги, так как мощность силовой установки и расход топлива пропорциональны потребляемой мощности. Для винтокрылых аппаратов высокая эффективность вертикального полета обусловлена малой нагрузкой на диск (отношение силы тяги винта к площади диска, отметаемого лопастями). По теореме импульсов, подъемная сила несущего винта создается путем ускорения воздуха вниз, так как подъемной силе соответствует равная ей и противоположно направленная реакция, с которой лопасти воздействуют на воздух. Следовательно, воздух в следе несущего винта обладает кинетической энергией, на образование которой при установившемся горизонтальном полете должна быть затрачена мощность силовой установки вертолета. Это индуктивная мощность она составляет абсолютный минимум мощности, требуемой для устойчивого полета, и ее затраты необходимы как для фиксированных, так и для вращающихся крыльев. Установлено, что для винтокрылых аппаратов на режиме висения затраты индуктивной мощности на единицу силы тяги пропорциональны корню квадратному из нагрузки на диск. Следовательно,  [c.17]


Режим вертикального полета, когда горизонтальная составляющая скорости равна нулю, — это основной режим, отличающий вертолет от других летательных аппаратов. Режим полета, при котором равны нулю как горизонтальная, так и вертикальная составляющие скорости, т. е. движение относительно невозмущенного воздуха вообще отсутствует, называется висением. Подъемную силу и управление на режиме висения обеспечивают изменением углов установки лопастей, создавая на них требуемые аэродинамические силы. Вертикальный полет может представлять собой набор высоты или снижение при этом диск винта горизонтален и, следовательно, сохраняется строго осевое протекание воздушного потока через диск. На практике вертолет должен быть способен и к горизонтальному полету. При полете вперед диск несущего винта остается почти горизонтальным, так что скорость набегающего потока складывается со скоростью вращения лопастей в плоскости диска. Подъемную силу и управление вертолетом по-прежнему обеспечивает несущий винт. Кроме того, посредством небольшого наклона вперед вектора силы тяги он создает необходимую для полета вперед пропульсивную силу.  [c.24]

Угол конусности несущего винта пропорционален массовой характеристике лопасти у, так как этот угол определяется равновесием моментов аэродинамических и центробежных сил относительно оси ГШ. Угол конусности, по существу, пропорционален коэффициенту силы тяги некоторое различие между ними обусловлено наличием в подынтегральном выражении момента относительно оси ГШ добавочного множителя г (по сравнению с выражением для полной подъемной силы лопасти). Так как сила тяги винта создает моменты относительно осей ГШ, угол конусности увеличивается до тех пор, пока возрастающий момент центробежных сил не уравновесит аэродинамический момент. ,  [c.192]

Постепенное уменьшение подъемной силы сечений до нуля на конце лопасти можно учесть с помощью коэффициента концевых потерь В, предполагая, что сечения при г > BR имеют сопротивление, но не создают подъемной силы. Кроме того, лопасть имеет неоперенную часть, т. е. несущие сечения начинаются не при г = О, а при г = го. С учетом концевых потерь и неоперенной части выражение для коэффициента силы тяги винта принимает вид в  [c.202]


Маха, должны иметь хорошие характеристики срыва и высокий максимальный коэффициент подъемной силы. Наконец, при полете вперед профили наступающей лопасти, работающие при малых углах атаки, должны иметь высокое критическое число Маха. Критерием выбора профиля для режима висения является большая величина силы тяги несущего винта, тогда как для полета вперед при больших скоростях не должны возникать большие вибрации и нагрузки. Часто для лопастей несущего винта выбирается симметричный профиль умеренной толщины, для упрощения конструкции неизменный по всему радиусу лопасти. Симметричный профиль не создает шарнирного  [c.315]

В работе [L.16] путем испытаний модели винта в аэродинамической трубе исследовалось влияние на срыв таких параметров, как сужение и крутка лопасти, вогнутость профилей сечений, собственная частота крутильных колебаний лопасти и число лопастей винта. Измерялись аэродинамические характеристики винта, колебания лопастей и положения точки отрыва пограничного слоя. Оказалось, что изменение скорости роста Ст/о, маховое движение лопастей и переменные напряжения лопасти в плоскости хорд указывают на приближение срыва не хуже, чем положение точки отрыва пограничного слоя на лопасти. Установлено, что срыв начинается на стороне отступающей лопасти при 260° < ф < 330° на радиусе r 0,75R. С ростом Ст/а начало зоны срыва перемещается к азимуту ф = 180°, а конец этой зоны отходит назад, на азимут ф = 20°. При умеренной подъемной силе точка отрыва пограничного слоя на лопасти быстро перемещается от задней кромки к передней. При большой подъемной силе отрыв пограничного слоя происходит вблизи передней кромки и связан, по-видимому, со сходом пелены вихрей при срыве. При заданной скорости полета наступление срыва в первую очередь зависит от силы тяги несущего винта, а не от значений общего и циклического шагов, обеспечивающих требуемую подъемную силу. Значение Ст/а, при котором начинается срыв (срывное значение), уменьшается с ростом i. Использование суживающихся лопастей и вогнутых профилей существенно улучшает срывные характеристики винта, увеличивая срывное значение Ст/а и улучшая летные характеристики при срыве. Уменьшение жесткости на кручение отодвигает начало срывного флаттера, но изменение крутки, частоты крутильных колебаний и числа лопастей практически  [c.819]

Так же как для крыла самолета, где каждому значению подъемной силы соответствует определенное значение силы лобового сопротивления, так и для несущего винта каждому значению тяги соответствуют определенные значения момента от сил лобового сопротивления лопасти. Однако данному значению тяги могут соответствовать различные по величине моменты вследствие того, что система объединенного управления шаг-газ позволяет получить необходимую величину тяги при разных значениях общего шага.  [c.93]

Рябушинским впервые был сконструирован и построен уникальный стенд для исследования индуктивной скорости потока под несущим винтом. Основой стенда (рис. 45) был специальный щуп, служивший для измерений пульсаций потока под ним. Исследователь измерял осевые индуктивные скорости и, вычисляя приращение количества движения, определял подъемную силу. Им впервые было установлено воронкообразное распределение индуктивных скоростей по диску винта. Исследовались развиваемая винтом подъемная сила и потребная мощность, изучалось влияние на них числа и формы лопастей. Выло получено множество экспериментальных зависимостей тяги винта от частоты вращения при его работе в осевом потоке. Причем замеры производились при вращении винта как в одну, так и в другую стороны. Это дало возможность изучить работу винта на всех характерных режимах пропеллера, ветряка и воздушного тормоза, с плавным переходом от одного режима к другому, включая состояние авторотации и вихревого кольца . Рябушинским впервые было введено понятие относительного КПД винта, определено его значение для существующих винтов.  [c.99]


Обычный несущий винт вертолета состоит из двух или большего числа одинаковых, разделенных равными угловыми промежутками лопастей, прикрепленных к центральной втулке. Винт равномерно вращается под действием крутящего момента, который передается, как правило, от двигателя на вал. Подъемные силы и сопротивления лопастей — этих вращающихся крыльев — создают аэродинамический момент, силу тяги и другие силы и моменты несущего винта. Большой диаметр винта, требуемый для эффективного вертикального полета, и большое удлинение лопастей, диктуемое необходимостью иметь высокое аэродинамическое качество вращающихся крыльев, делают лопасти гораздо более гибкими, чем у винтов с большой нагрузкой на диск (например, пропеллеров). Следовательно, при полете аппарата лопасть несущего винта под действием аэродинамических сил будет совершать значительные движения. v3th движения могут вызвать большие напряжения в лопасти или большие моменты в ее корне, которые через втулку передаются вертолету. Поэтому при проектировании лопастей и втулки несущего винта следует позаботиться о том, чтобы эти нагрузки были по возможности малы. Центробежные силы препятствуют отклонению вращаЮ щейся лопасти от плоскости диска, так что ее движение будет наиболее заметным вблизи комля. Вследствие этого поиски прО  [c.20]

Здесь нулевая гармоника 0о — это средний угол установки лопасти, а первые гармоники ряда характеризуют циклическое изменение угла установки с частотой 1. Изменение угла установки лопасти происходит по двум причинам. Во-первых, при работе винта возникают упругие деформации лопасти и элементов цепи управления (динамические степени свободы). Это движение описывают уравнения, которые выводятся из условия равенства нулю суммы моментов, действующих на лопасть относительно ее оси. Во-вторых, угол установки изменяется вследствие действия системы управления. Именно изменением угла установки лопастей летчик управляет вертолетом. Моменты относительно оси лопасти малы, а изменения подъемной силы, вызванные действием управления, значительны, так как происходит непосредственное изменение угла атаки. Поэтому управление углом установки лопастей — весьма эффективный способ управления силами, создаваемыми несущим винтом. Обычно управление охватывает только нулевую и первую гармонику, т. е. задает угол установки 0 = 0о-f 0i os -f 0и sirni без учета деформаций. Среднее значение 0о называют общим шагом винта, а сумму первых гармоник с коэффициентами 0i и 0и — циклическим шагом. Изменение общего шага позволяет управлять в основном средними силами на лопастях, а значит, величиной силы тяги винта, изменение же циклического шага дает возможность управлять ориентацией плоскости концов лопастей (т. е. первыми гармониками махового движения), а значит, наклоном вектора силы тяги. Угол 0i определяет поперечный наклон вектора силы тяги, угол 01S — продольный.  [c.163]

Мерой влияния срыва на несущем винте служит отношение коэффициента силы тяги к коэффициенту заполнения Ст/о, которое определяет средний по диску винта коэффициент подъемной силы лопасти. На режиме висения могут быть получены достаточно высокие значения Ст/о до наступления срыва и увеличения профильных потерь мощности. Однако при полете вперед на стороне отступающей лопасти углы атаки увеличиваются для обеспечения той же нагрузки, что и на стороне наступающей лопасти (см. разд. 5.6), так что срыв начинается при существенно меньших Ст/о. Профильная мощность увеличивается, если в срыве находится значительная часть диска винта. Важно отметить, что нарастание вибраций и нагрузок на винт происходит резко в результате больших переменных составляющих шарнирных моментов лопасти, периодически попадающей в срыв. Срыв на несущем винте вертолета подробно рассмотрен в гл. 16. Предельная величина Ст/о, определяемая при полете вперед срывом, уменьшается при увеличении скорости полета или про-пульсивной силы винта, поскольку оба эти фактора увеличивают неравномерность распределения углов атаки по диску. С другой стороны, для заданного Ст/о влияние срыва проявляется при некотором критическом значении i, которое увеличивается при снижении нагрузки на лопасть. Поскольку наименьшее допустимое значение Ст/о ограничено возможностями увеличения площади лопасти (по соображениям ухудшения массовых и летных характеристик), предельная величина [х, обусловленная срывом, является важным конструктивным параметром вертолета.  [c.305]

Влияние сжимаемости учитывается путем введения соответствующего множителя. Описанный метод был использован для расчета проявлений срыва на несущем винте в условиях полета вперед. При этом расчетные зависимости описывали характерные крутильные колебания, возникающие при вхождении сильно нагруженной отступающей лопасти в зону срыва, чего при использовании стационарных срывных характеристик профилей получить не удается. Однако количественное соответствие расчетных данных летным экспериментам оставляло желать лучшего. Расчетные моменты кручения лопасти соответствовали экспериментальным лишь при увеличении расчетной силы тяги винта на 30%. Имелись расхождения и в законах колебаний. Так, в полете колебания начинались с азимута ij) = 180°, а в расчете — с азимута г э = 270°. В работе [С.26] описываются дополнительные измерения нестационарных подъемной силы и момента на колеблющемся по углу атаки профиле NA A0012 результаты представлены в виде таблиц по параметрам а, А =  [c.814]

После того как выявлены основные закономерности для сил, действующих на лопасть при различных режимах полета, следует перейти к общему анализу аэродинамических характеристик всего несущего винта. Площадь, ометаемая лопастями при вращении, принимается как несущая поверхность, подобная крылу самолета, создающая помимо подъемной силы еще и тягу, которая сообщает движение всему вертолету.  [c.56]


Комлевая часть лопасти, представляющая собой узлы крепления и шарниры ее подвески, а также втулка несущего винта в создании тяги не участвуют. В поступательном полете при косой обдувке винта в центральной ч сти поверхности, ометаемой винтом при вращении, некоторая часть лопасти в азимутах от 180 до 360° обдувается с хвостика профиля и не создает подъемной силы. Следовательно, центральная часть площади несуи1его винта также должна быть исключена при подсчете эффективной площади.  [c.65]


Смотреть страницы где упоминается термин Подъемная сила лопасти и сила тяги несущего винта : [c.28]    [c.40]    [c.578]    [c.289]    [c.792]    [c.794]    [c.27]   
Смотреть главы в:

Летающие модели вертолетов (копия)  -> Подъемная сила лопасти и сила тяги несущего винта



ПОИСК



V подъемная

Вал несущего винта

Винта лопасть

Лопасти несущего винта

Лопасть

Подъемная сила

Сила тяги

Сила тяги винта

Силы Сила тяги

Ток несущий

Тяга 671, VII



© 2025 Mash-xxl.info Реклама на сайте